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1. Introduction 
The quality of the rollers used, and effective monitoring of their 

condition is extremely important for the reliable operation of the belt 
conveyor [29, 32, 36, 57]. Poor technical condition of the rollers may 
result in the occurrence of mechanical damage to the belt, most often 
resulting from blocking a single roller in the set [16, 49]. Blockades of 
the rollers cause excessive friction between the tube and the belt, and 
consequently accelerated wear, which may lead to a fire focus on the 
conveyor route [3]. One of the most common causes of roller block-
ade is bearing damage [1, 55]. In addition, worn bearings significantly 
increase the resistance to movement, which results in an increase in 
the demand for electricity [11, 25, 42]. Under operating conditions, 
roller bearings are exposed to many factors accelerating their wear: 
dynamic loads, moisture, operating temperature, vibration and dust 
[43]. Nearly 50% of all conveyor bearing failures are caused by the 
presence of moisture and dust, which is why the design and quality of 
the seal is an extremely important factor determining the undisturbed 
periods of the conveyor [17]. Bearing life is also affected by the lubri-
cants used [12, 35]. Friction between the belt and the blocked roller 
causes abrasion of the jacket surface until it is destroyed [34]. Local 
abrasion of the tube also changes the values of dynamic unbalance 
and radial run-out, the main performance parameters of the rollers 

[5], which may result in excessive vibrations of the route structure and 
pose a serious threat of resonance [7]. Damage to rollers very often 
develops without clear signs, so it is very important to use methods of 
preventive monitoring of their technical condition [37]. The key in-
dicators assessing the technical condition of rollers during the opera-
tion of the rollers are noise levels, vibrations, temperature increases 
and changes in the properties of the lubricant used [21, 30, 41, 45]. 
The most used are diagnostic methods using a vibroacoustic signal to 
evaluate [13, 27, 38, 56]. Algorithms are used consisting in general 
measurement of the vibration level of bearing nodes, measurement 
of the peak coefficient, analysis of the signal envelope, surge pulse 
method, fuzzy logic or wavelet transform [4, 10, 18, 24]. Methods 
based on the measurement of the vibroacoustic signal are very afford-
able in the implementation of solutions based on machine learning 
[33, 52, 53] with high increase of usage in monitoring the operating 
status of belt conveyors [26, 39]. The second group of methods for as-
sessing the condition of rollers is related to temperature control [32]. 
The DTS (Distributed Temperature Sensing) method measures the 
operating temperature of the rollers using optical fiber [51]. Thermal 
imaging methods are also widely used [9, 34, 47]. Many of the solu-
tions presented require direct installation of measuring devices on the 
conveyor route or measurements of individual idler sets. In the case 
of long conveyor routes and hard-to-reach places such as underground 
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mines, these are not optimal solutions, which is why inspection ro-
bots [15, 46]  or drones [8] are being used more and more commonly. 
However, there are locations where their use is not possible due to 
the limited space of the excavation, e.g. narrow drifts with dense con-
struction of the conveyor route or other barriers preventing access to 
the entire conveyor, such as local changes in the geometry of drift or 
local accumulations of water. The article proposes a method of detect-
ing damage to rollers based on the transverse vibration signal of a 
moving, unloaded conveyor belt, measured directly on its surface [6]. 
A methodology for measuring input signals, filtration and decomposi-
tion was proposed to acquire useful data for assessing the state of fail-
ure, based on standard frequency analysis. The characteristics of the 
interference of the signal from the belt are described. A simple LSTM 
(Long Short-Term Memory) neural network with time memory was 
built to verify the possibility of detecting damage based on time sig-
nals. Tests of the proposed model were conducted on data measured 
in the laboratory with prepared damage to the roller tube and data 
measured on the conveyor under mining conditions. The proposed 
measurement method enables effective detection of the damaged 
roller and the belt cooperation on sections of routes with difficult ac-
cess or in the case of long conveyors. Compared to current diagnostic 
methods, it eliminates the need for additional equipment installed on 
the conveyor structure and reduces the number of people operating the 
process. Shortening the measurement time and simplifying the infer-
ence process through an autonomous algorithm allows to increase the 
frequency of diagnostic tests. 

2. Materials and methods

2.1.	 Test rigs 
Laboratory tests were conducted on a short conveyor with a length 

of approx. 8 m, with a 0.8 m wide EP-200 textile belt installed (Fig. 
1a). The conveyor was equipped with 5 idler supports (three rollers) 
with a roller diameter of 133 mm. The average distance between the 
sets was 0.95 m. The stand allowed for smooth adjustment of the belt 
speed up to 5.3 m/s. The tests were conducted at 3 selected speeds: 0.4 
m/s, 0.9 m/s and 1.3 m/s. The measurement of the linear velocity of 
the belt and the circumferential velocity of the roller jacket was per-
formed by the installed incremental encoders. Speed control allowed 
to control a change in the characteristic frequency of the damaged 
roller [14]. Because the transverse vibrations of the belt depend on the 
tensile force, a constant tensioning force was provided at the level of 
approx. 2 kN [6]. The measurement of the tensioning force was made 
possible by strain gauges installed on the stand.

Field tests were conducted on the PT-1000/60 conveyor with a 
length of 78 m and an angle of inclination of 16°, used to transport ag-
gregate in a granite mine (Fig. 1b). On the conveyor was installed tex-
tile belt Z4P - 630 - 1- I - 1000 [19]. The diameter of the roller tube in 

the troughed support was also 133 mm. The tests were conducted only 
at the nominal belt speed, i.e. 1.81 m/s because the conveyor was not 
equipped with a speed control system. The pre-tension of the belt was 
caused by a gravity take-up device, at the level of approx. 10.5 kN.

To simulate the damage on the laboratory conveyor, a 133 mm di-
ameter roller with point damage on the surface of the steel tube was 
used (Fig. 2). The damage is designed to correspond to characteristic 
tube defects under real operating conditions [31], where abrasive wear 
of the steel surface arises due to excessive friction with the belt and 
the process is accelerated by the presence of abrasive materials. The 
form of damage simulates the local loss of the steel surface and the 
characteristic sharp edges, which in laboratory conditions affect the 
change in the geometry of the tube and force the belt to vibrate. 

Fig. 2. Prepared point damage to the test roller tube

2.2.	 Methodology
In the research, original measuring device enclosed in a sealed 

housing and fixed to an unloaded belt was used (Fig. 3). This ap-
proach allowed to eliminate the occurrence of inertial movements 
caused by vibrations of the belt itself. The device moved from the 
return pulley to the drive pulley, recording vibration signals along the 
entire length of the route. 

2.3.	 Characteristics of the measuring device 
The most important element of the measuring device is a micro-

controller that performs the acquisition of measurement data from the 
vibration sensor, their initial processing, and data recording on the SD 
card. The system is equipped with a battery power supply. An analog 
accelerometer was used to measure the acceleration of vibrations in 
the vertical direction. The accelerometer allows the measurement of 

Fig. 1. Measuring stations: a) laboratory conveyor, b) PT-1000/60 conveyor in aggregate mine

b)a)
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the vibration signal in 3 axes, but because the belt vibration signals 
are dominated by transverse vibrations, it was decided to simplify the 
analysis of the results and measure only the vertical component [22]. 
The stabilization of the supply voltage was solved by adding a con-
verter to the system. The output signal is monitored for free-fall signal 
detection to eliminate signals that may be caused by contact-loss of 
the measuring device from the belt, e.g., due to faulty mounting. The 
device allows you to sample the signal at a frequency of 2500 Hz. 
This means the possibility of recording the frequency of characteristic 
failures up to 1250 Hz. The presented method is dedicated to detecting 
damage to the surface of the roller tube, unbalance of the rollers and 
radial run-out due to poor roller quality or bearing degradation. All 
these factors affect the quality of the roller – belt contact. These are 
damages with low characteristic frequencies, causing vibrations of the 
belt of significant amplitude.  

Acquiring the correct absolute value of the measured vibration ac-
celerations required a preliminary calibration of the accelerometer. 
Calibration allows to acquire a precise value of vibration accelera-
tion in relation to the analyzed system. It was conducted through the 
installation of the measuring device in a state of equilibrium, isolation 
of the system from all external vibrations and long-term measurement 
of the indications of analog outputs of the sensor. The measured signal 
during the measurements was reduced by the average value acquired 
during calibration. Based on the known measurement resolution of 
the microcontroller and the sensitivity of the sensor, the voltage signal 
was transformed into the result in acceleration units.

3. Results

3.1.	 Frequency analysis
Figure 4 demonstrates examples of time signals acquired for a 

conveyor during its normal operation and a conveyor with simulated, 
point damage to the roller tube. This chapter details the data process-
ing for one recorded speed of 0.9 m/s. The length of the recorded 
signal is in relation to the speed of the belt. In the time-frequency 
analysis, a characteristic algorithm for detecting local damage to ro-
tating elements was used [54]. The main objective of the analysis was 
to determine the presence of frequencies characteristic damage in the 
signal, cyclicity and distribution of frequency changes dominant dur-
ing the conveyor operation with damage in relation to the distribution 
for normal operating conditions. 

A clear signal was acquired, generated by the forced damage to the 
roller. The discussed case of roller damage detection in laboratory con-
ditions is a simple issue, because for effective detection it is enough to 
use classic diagnostic models based on changes in the vibration am-
plitude. However, such an approach is not possible in the case of the 
analysis of signals recorded on a mine conveyor, which is discussed 
later in the article. At this stage, the focus was on the possibility of de-
tecting the characteristic frequencies in the belt signal, the description 
of the cyclical nature of the recorded phenomena and the influence of 
the belt damping properties and environmental disturbances on the 
acquired results. Measurement of vibration acceleration by means of 
electronic accelerometers in mechanical systems is burdened with 
noise and disturbances, as a result of the action of acoustic vibrations 
[48]. In order to reduce the interference, a three-stage input signal 
filtering algorithm was used. Due to the wave nature of the damage 

Fig. 3. Measuring device: a) located on the laboratory conveyor belt, b) on the PT-1000/60 conveyor

b)a)

Fig. 4. Acceleration of transverse vibrations along the length of the laboratory conveyor: a) without damaged roller, b) with damaged roller

b)a)



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 24, No. 3, 2022 513

signal, filtering with wavelet decomposition was used first [44, 58]. 
Then, a one-dimensional median filter was used, which allows for 
effective elimination of point interference, and at the same time does 
not cause distortion of the slopes [59].  The last stage of filtration was 
the use of a Butterworth low-pass filter to eliminate high-frequency 
interference characteristic of electronic accelerometers [60]. The filter 
parameters were selected on the basis of the spectral analysis of the 
input signal (signal density and the range of the read interferences). 
Figure 5 presents the time signals after decomposition and filtration, 
which were used for further frequency analysis.

The damage is located in the last segment of the input signal, there-
fore the last signal fragment with a duration of 3 s was separated for 
further processing. Figure 6 demonstrate spectrograms (SPC), time-
frequency characteristics of the normal and faulty signals. For this 
purpose, the short-time Fourier transform (STFT) was used, which in 
the continuous domain is represented by the equation [28]: 

	 STFT x t X x t w t e dti t( ){ } = ( ) = ( ) −( )
−∞

∞
−∫τ ω τ ω, 	 (1)

where: ( )w t  – window function, ( )x t  – transformed time signal, 
ω – frequency.

The discrete form of the STFT for splitting a time signal into over-
lapping data frames has the form [28]:
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For the above conditions, the spectrogram representation can be 
declared as:

	 SPC x t X( ){ }( ) ≡ ( )τ ω τ ω, , 2 	 (4)

The SPC (Fig. 6) is presented considering the significant frequency 
range up to 100 Hz.

Fig. 6.	 Transverse vibration spectrogram of the time segment with the identi-
fied damage after filtration: a) normal signal, b) faulty signal   

At this stage of the analysis, low-frequency damage signals are 
characteristic for the point damage of the roller tube, which is a slow-
rotating element. Visible are cyclical pulses from the damaged roller, 
with a large amplitude compared to the normal signal. In order to con-
firm the cyclical nature of the events coming from the roller rotation, 
the signal autocorrelation (ACF) will be performed in the next step. 
The autocorrelation function makes it possible to exclude the random-

Fig. 5. Acceleration of transverse vibrations along the length of the laboratory conveyor after filtration: a) without a damaged roller, b) without a damaged roller

b)

a)

b)a)
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ness of the signal (it determines its origin from the non-random factor, 
which in this case is the mantle damage) and to determine the cycle 
length. Autocorrelation for continuous signals is defined as [23]:

	 ACF x t x t dt x t x t dtτ τ τ( ) = +( ) ( ) = ( ) −( )
−∞

∞

−∞

∞

∫ ∫ 	 (5)

where: τ  – lag, ( )x t  – complex conjugate ( )x t .
The ACF for a discrete signal is: [23]: 

	 ACF x n x n
n Z

ξ ξ( ) = ( ) −( )
∈
∑ �	 (6)

where: ξ  – lag. 

Figure 7 demonstrates the normalized spectral autocorrelation of 
the normal and damaged signals for the analyzed speed variants. Nor-
malization was performed on the basis of the mean. The plots were 
prepared for a lag of 0.5 s

From the acquired spectral autocorrelation plots, the disturbances 
and the result for the zero lag were filtered out, when for obvious 
reasons the autocorrelation value was equal to one. The ACF of the 
fault signal indicates a clear maximum (not visible with the ACF of 
the normal signal), with a lag of approximately 0.1 s, which translates 
into a fault frequency of 10 Hz. The acquired result is consistent with 

the analysis of the periodicity of the maximum amplitudes presented 
after filtration in Figure 5. Detailed analysis reveals a slight increase 
in the failure frequency with increasing speed from 9 Hz for a speed 
of 0.4 m/s to 10.2 Hz for a speed of 1.3 m/s. ACFs have one distinct 
common component with a lag of approximately 0.18 s (5.6 Hz). The 
best results were acquired for the highest belt speed, which is due to 
the limited impact of broadband high-frequency interference.

Because the SPC of the normal and faulty signal (Fig. 6) are quite 
different, the characteristic features of the signal can be distinguished 
and used to determine changes in the frequency domain associated 
with the appearance of point tube damage. Mean peak frequencies 
(mPF) were used as an indicator of the condition of the roller. In the 
case of describing the spectrogram as a function of two variables 
P t( , )ω , the peak frequency (PF) can be defined as [61]: 

	 PF t argmax P t( ) = ( )ω ω, 	 (7)

On the other hand, the mean peak frequency is described by the 
relation [61]:

	 mPF
T

PF t dt
T

= ( )∫
1

0
	 (8)

The segmentation function was used to divide the signals into 13 
smaller segments. The number of samples in each segment determines 

a)

c)

b)

d)

Fig. 7.	 Spectral autocorrelation of transverse vibrations of time segments with a localized test roller: a) for the roller without damage (normal signal), b) for roller 
damaged at 0.4 m/s, c) for roller damaged at 0.9 m/s, d) for roller damaged at 1.3 m/s
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the total number of signal samples (the higher the tested speed was, 
the smaller the number of samples in the segment). Determined mPF 
for each segment. Figure 8 demonstrates the changes in the mPF of 
the normal and faulty signal during the movement of the measuring 
device on the laboratory conveyor from the return pulley to the drive 
pulley, for all analyzed speed variants. The test roller location point 
was also marked to identify mPF changes in this segment.

Figure 8 demonstrates the change in mPF at the location of the test 
roller between the normal signal and the damage test signal. The slight 
differences between the results acquired on the basis of the ACF result 
from the inaccuracy of the segmentation grid. The limitations of the 
diagnostic method, consisting in the assessment of mPF changes dur-
ing the operation of the conveyor along the route, are low-frequency 
environmental signals of the conveyor’s operation, which should not 
be interpreted as a source of potential damage.

In the case of mine conveyors, changes in the mPF in the range 
of low frequencies (characteristic for damage to the surface of roll-
ers) may be unclear, and the standard diagnostic method of rotating 
elements, based on the above assumptions, may not be practical. The 
analysis presents, that point changes in the peak value of the vibra-
tion amplitude bring much more valuable information. An automated 
detection system based on a manually defined alarm threshold of ex-
ceeding the permissible peak amplitude value may generate erroneous 
alarm signals. The result of this state is a dynamic load on the belt due 
to a randomly changing stream of bulk material [20]. The solution 
to reduce future errors are autoencoder algorithms, which enable the 

reconstruction of the signal based on the known characteristics of the 
device operation under normal conditions. 

3.2.	 Autoencoder application 
Automation of the time signal anomaly detection process, based 

on changes in the peak value of the vibration amplitude, was based 
on the LSTM autoencoder model, an artificial, recurrent neural net-
work (RNN) [50]. LSTM uses deep learning to reconstruct nonlinear 
time series. The basis of the system’s operation is a signal defined 
as the normal operating state, which the embedded neural network 
learns. On this basis, anomaly points in the reconstructed signal can 
be identified [40]. The idea of the autoencoder operation is presented 
in Figure 9.

Fig. 9.	 Diagram of autoencoder operation for discrete time series anomaly 
detection [2]

a)

c)

b)

Fig. 8.	 Change of the mean peak frequency during the movement of the device from the return pulley to the drive pulley: a) for a speed of 0.4 m/s, b) for a speed of 
0.9 m/s, c) for a speed of 1.3 m/s
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The general equations of the autoencoder is presented in the figure 
above take the form [2]:

	
h f x W x b= ( ) = +( )( ) ( )σ1

1 1 	 (9)

	
′ = ( ) = +( )( ) ( )x g h W h bσ2

2 2 	 (10)

where: f  – encoder function, g  – decoder function, g f x ( )  – re-
constructed input x , h  – the encoded representation of the input x , 
σ1 , σ2  – activation functions, ( )1W , ( )2W  – weight matrices, ( )1b , 
( )2b  – bias vectors. 

The autoencoder loss function to minimize the reconstruction error 
is defined as [2]:

	 L x x x x x W W x b b, || ( ||′ ′( ) = − = − +( )( ) +( ) ( ) ( ) ( )2
2

2
1

1 1 2 2σ σ  (11)

The diagram of the neural network used is demonstrated in Figure 10.

Layer 3 and layer 6 are responsible for the regularization of the data 
in order to overfitting the model and improve its efficiency. Layer 4 
repeats the input vector according to the defined number of backward 
time steps. For the model, this parameter was set to 30 samples. Final-
ly, layer 7 creates a time vector with a length equal to the number of 
outputs from the previous layer. As the loss index, the mean absolute 
error (MAE) was used, defined as: 

	
1

1 '
n

i i
i

MAE x x
n =

= −∑ 	 (12)

where: n  – number of data points, x  – actual value, 'x  – value pre-
dicted by the model used. 

3.2.1.	Laboratory conveyor  
In the case of laboratory tests, the signals of the normal operation 

of the conveyor (Fig. 11) were defined for the work with the roller in 
good technical condition (recorded before the damage was prepared).

Figure 12 demonstrates the model losses acquired during succes-
sive iterations for training and test data at a speed of 0.9 m/s.

The places where the test loss (faulty signal) is lower than the train-
ing loss (normal signal) may mean that the failure variant considered 
by the model was trivial to predict, significantly different from the 
data defined as the normal state. This situation is illustrated in Fig-
ure 4 as the signal peaks at the location of the damaged roller. The 
next figure (Fig. 13) demonstrates the MAE distribution for training 

and test data. The red line presents the course of the expected normal 
distribution.

The learned algorithm was used to predict anomalies in the signal 
from the laboratory conveyor (Fig. 14). For the 
purposes of these studies, the thresholding pa-
rameter was defined as the maximum value of 
the vibration magnitude of the normal signal.

3.2.2. PT-1000/60 conveyor
For a conveyor operated in real conditions, 

the normal signal was assumed as a time slice 
with a standardized distribution with respect to 
other segments. Figure 15 demonstrates short 
time slices of signals used to train the neural 
network.

Figure 16 presents the acquired model losses 
during successive iterations for the training and 
test data recorded on the conveyor in full scale. 

In this case, a potentially faulty signal is the signal collected during 
the full travel of the device on the route, from the return pulley to the 
drive pulley. Over the entire length of the route, there were over 90 
idler supports, which were verified.

As in the case of laboratory tests, Figure 17 demonstrates the distri-
bution of MAE for the normal signal and the complete signal recorded 
on the conveyor.

Fig. 10. Scheme of the application of the neural network

Fig. 11.	 A slice of the scaled time signal (without damage) for training the 
neural network

Fig. 12. Model learning loss for successive iterations
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The results of roller anomaly detection with the use of the autoen-
coder are demonstrated in Figure 18, and the on-site inspection con-
firmed the place of their occurrence in the indicated sections of its 
route.

In the recorded signal, the autoencoder detected 3 locations of po-
tential damage to the roller. The first point of damage was found at 
the point of loading the material onto the conveyor, at the very begin-
ning of the route (approx. 2 seconds). The registered signal anomalies 
were caused by damage to the roller bearing (Fig. 19a), which lost its 
functional properties due to damage to the seal or degradation of the 

b)a)

Fig. 13. MAE histogram with the determined normal distribution: a) for training data (normal), b) for test data (faulty)

Fig. 14. Detection of anomalies in a scaled laboratory signal: a) for a speed of 0.4 m/s, b) for a speed of 0.9 m/s, c) for a speed of 1.3 m/s

a)

c)

b)
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joint between the rollers tube and the hub. The work of this particular 
roller was much louder than the other rollers in the same set. The sec-
ond point of damage (approx. 7 seconds) was related to the friction of 
the belt against the blocked tracking roller (Fig. 19b). The third point 

of damage (approx. 10 seconds) was caused by abrasion of the roller 
tube (Fig. 19c), which was replaced immediately after the tests.

4. Summary and conclusions
The article presents a method of roller diagnostics based on analy-

sis of recorded signal of transverse vibrations using a measuring de-
vice located on the surface of the belt. The research was conducted 
in laboratory conditions with prepared damage to the roller tube, in a 
known location along the route, and then the process of validating the 
adopted test procedure in real conditions was performed. The recorded 
vibration signals were filtered and decomposed to reduce noise, and 
then subjected to standard frequency analysis. There were differences 
in the measurement results acquired for signals recorded in the pres-
ence of a damaged element and in the normal state (without damage), 
which were characterized by different values of signal amplitude. 

Studies have proven that for laboratory conditions it is possible to 
find the location of the damaged element based on the change in the 
average peak frequency over time and spectral autocorrelation. The 
use of spectral autocorrelation proved the cyclicity of the signal in 
the case of a damaged roller and allowed to indicate its frequencies of 
excited vibrations.

The limitation of the use of the diagnostic method, consisting in the 
assessment of mPF changes during conveyor operation in real con-
ditions, are numerous, low-frequency signals related to the specifi-
city of the operating conditions, which can be mistakenly treated as 

Fig. 15.	 A slice of the scaled time signal (without damage) for training the net-
work

Fig. 16. Model learning loss for successive iterations

Fig. 17. MAE histogram with determined normal distribution: a) for training data (normal), b) for test data (potentially faulty)

Fig. 18.	Anomalies were detected in the transverse vibration signal of the full-
scale conveyor

b)a)
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a source of potential damage, but in fact are only signal interference. 
This prompted the authors to develop an autoencoder model that re-
quired building an LSTM neural network algorithm with time memo-
ry, where damage detection is based on a comparison of recorded time 
signals with a signal used for deep learning and corresponding to nor-
mal operating conditions. The adopted detection algorithm effectively 
located the damaged roller at the laboratory stand and indicated poten-
tial areas of existing or developing damage to the rollers built on the 
mine conveyor, which was confirmed by the local inspection of the 
facility. The use of the auto encoder also resulted in the automation 
of the damage detection process, which can be extremely valuable 
when assessing the operation of long-distance conveyor routes. The 
proposed system of non-invasive diagnostics of the cooperation of the 
conveyor belt with the roller, as well as the presented method of inter-
pretation of the recorded signals is characterized by high application 
potential. It can be used both to identify local damages, determine the 
causes of their occurrence, but also to conduct a preventive inventory 
of the technical condition of the operated transport routes. 

Further work will be focused on improving the measurement algo-
rithm. The recorded transverse vibrations of the belt come from many 
phenomena occurring along the entire length of the upper conveyor 
rod. Faulty cooperation of the belt and the roller is a very complex 
issue, not related only to the damage to the roller itself. The measure-
ment method should allow to identify all anomalies on the conveyor 
route, as well as ensure their classification. For this, it is necessary to 
continue research on real objects with different design and operational 
parameters. This will provide a sufficient training database for effec-
tive detection and classification of roller damage. 
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Fig. 19. Anomalies found on the belt conveyor route: a) damaged roller bearing, b) blocked belt tracking roller, c) damaged roller tube

b) c)a)

References
1.  Ambrożkiewicz B, Syta A, Meier N et al. Radial internal clearance analysis in ball bearings. Eksploatacja i Niezawodnosc – Maintenance 

and Reliability 2021; 23(1): 42-54, https://doi.org/10.17531/ein.2021.1.5.
2.  Ardestani S B. Time Series Anomaly Detection and Uncertainty Estimation using LSTM Autoencoders. 2020.
3.  Barros-Daza M J, Luxbacher K D, Lattimer B Y, Hodges J L. Mine conveyor belt fire classification. Journal of Fire Sciences 2021; 40(1): 

44-69, https://doi.org/10.1177/07349041211056343.
4.  Bartelmus W. Condition monitoring of open cast mining machinery. Wroclaw (Poland), Oficyna Wydawnicza Politechniki Wrocławskiej: 

2006.
5.  Bartelmus W, Sawicki W. Progress in quality assessment of conveyor idlers. XVI IMEKO World Congress, Vienna (Austria), 2000: 6.
6.  Bortnowski P, Kawalec W, Król R, Ozdoba M. Identification of conveyor belt tension with the use of its transverse vibration frequencies. 

Measurement 2022; 190: 110706, https://doi.org/10.1016/j.measurement.2022.110706.
7.  Bortnowski P, Nowak-Szpak A, Król R, Ozdoba M. Analysis and Distribution of Conveyor Belt Noise Sources under Laboratory Conditions. 

Sustainability 2021; 13(4): 2233, https://doi.org/10.3390/su13042233.
8.  Carvalho R, Nascimento R, D'angelo T et al. A UAV-Based Framework for Semi-Automated Thermographic Inspection of Belt Conveyors 

in the Mining Industry. Sensors 2020;  20(8): 2243, https://doi.org/10.3390/s20082243.
9.  Dabek P, Szrek J, Zimroz R, Wodecki J. An Automatic Procedure for Overheated Idler Detection in Belt Conveyors Using Fusion of Infrared 

and RGB Images Acquired during UGV Robot Inspection. Energies 2022; 15(2): 601, https://doi.org/10.3390/en15020601.
10.  Delvecchio S, Bonfiglio P, Pompoli F. Vibro-acoustic condition monitoring of Internal Combustion Engines: A critical review of existing 

techniques. Mechanical Systems and Signal Processing 2018; 99: 661-683, https://doi.org/10.1016/j.ymssp.2017.06.033.
11.  Ding H, Zu J W. Effect of one-way clutch on the nonlinear vibration of belt-drive systems with a continuous belt model. Journal of Sound 

and Vibration 2013; 332(24): 6472-6487, https://doi.org/10.1016/j.jsv.2013.07.009.
12.  Dmitrichenko N F, Milanenko A A, Hluhonets A A, Minyaylo K N. A technique for forecasting the durability of rolling bearings and the 

optimum choice of lubricants under flood-lubrication and oil-starvation conditions. Journal of Friction and Wear 2017; 38(2): 126-131, 



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 24, No. 3, 2022520

https://doi.org/10.3103/S1068366617020076.
13.  Dybała J, Zimroz R. Rolling bearing diagnosing method based on Empirical Mode Decomposition of machine vibration signal. Applied 

Acoustics 2014; 77: 195-203, https://doi.org/10.1016/j.apacoust.2013.09.001.
14.  Dyer D, Stewart R M. Detection of Rolling Element Bearing Damage by Statistical Vibration Analysis. Journal of Mechanical Design 1978; 

100(2): 229-235, https://doi.org/10.1115/1.3453905.
15.  Faria H D, Lizarralde F, Costa R R et al. ROSI: a mobile robot for inspection of belt conveyor. IFAC-PapersOnLine 2020; 53(2): 10031-

10036, https://doi.org/10.1016/j.ifacol.2020.12.2723.
16.  Fedorko G, Molnár V, Živčák J et al. Failure analysis of textile rubber conveyor belt damaged by dynamic wear. Engineering Failure Analysis 

2013; 28: 103-114, https://doi.org/10.1016/j.engfailanal.2012.10.014.
17.  FLEXCO. What Affects Conveyor Roller Life? Technical Solutions for Belt Conveyor Productivity: Factoring Life, Weight, Power, Noise, 

and Corrosion into Conveyor Roller Performance and Belt Safety. 2020.
18.  Gauthier S, Abarzhi S I, Sreenivasan K R et al. Diagnostics of the Technical State of Bearings of Mining Machines Base Assemblies. IOP 

Conference Series: Materials Science and Engineering 2017; 253(1): 012012, https://doi.org/10.1088/1757-899X/253/1/012012.
19.  Gładysiewicz L. Belt conveyors: theory and calculations (in Polish). Wrocław (Poland), Oficyna Wydawnicza Politechniki Wrocławskiej: 

2003.
20.  Gładysiewicz L, Kawalec W, Król R. Selection of carry idlers spacing of belt conveyor taking into account random stream of transported 

bulk material. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2016; 18(1): 32-37, https://doi.org/10.17531/ein.2016.1.5.
21.  Gunerkar R S, Jalan A K. Classification of Ball Bearing Faults Using Vibro-Acoustic Sensor Data Fusion. Experimental Techniques 2019; 

43(5): 635-643, https://doi.org/10.1007/s40799-019-00324-0.
22.  Hu Y, Wang L, Wang X et al. Simultaneous measurement of conveyor belt speed and vibration using an electrostatic sensor array. 

Conference Record - IEEE Instrumentation and Measurement Technology Conference 2015; 2015-July: 757-761, https://doi.org/10.1109/
I2MTC.2015.7151363.

23.  Kankar P K, Sharma S C, Harsha S P. Fault diagnosis of rolling element bearing using cyclic autocorrelation and wavelet transform. 
Neurocomputing 2013; 110: 9-17, https://doi.org/10.1016/j.neucom.2012.11.012.

24.  Karpiński R, Krakowski P, Jonak J et al. Estimation of differences in selected indices of vibroacoustic signals between healthy and 
osteoarthritic patellofemoral joints as a potential non-invasive diagnostic tool. Journal of Physics: Conference Series 2021; 2130(1): 012009, 
https://doi.org/10.1088/1742-6596/2130/1/012009.

25.  Kawalec W, Suchorab N, Konieczna-Fuławka M, Król R. Specific Energy Consumption of a Belt Conveyor System in a Continuous Surface 
Mine. Energies 2020; 13(19): 5214, https://doi.org/10.3390/en13195214.

26.  Kirjanów-Błażej A, Jurdziak L, Burduk R, Błażej R. Forecast of the remaining lifetime of steel cord conveyor belts based on regression 
methods in damage analysis identified by subsequent DiagBelt scans. Engineering Failure Analysis 2019; 100: 119-126, https://doi.
org/10.1016/j.engfailanal.2019.02.039.

27.  Klein R, Rudyk E, Masad E, Diagnostics R K. Decision and Fusion for Diagnostics of Mechanical Components. Annual Conference of the 
PHM Society 2011.

28.  Krishnan S. Advanced analysis of biomedical signals. Biomedical Signal Analysis for Connected Healthcare 2021: 157-222, https://doi.
org/10.1016/B978-0-12-813086-5.00003-7.

29.  Król R, Gladysiewicz L, Kaszuba D, Kisielewski W. New Quality Standards of Testing Idlers for Highly Effective Belt Conveyors. IOP 
Conference Series: Earth and Environmental Science 2017; 95(4): 042055, https://doi.org/10.1088/1755-1315/95/4/042055.

30.  Krynke M, Selejdak J, Borkowski S. Diagnosis and damage of bearings. Manufacturing Technology 2012; 12(2): 140-144, https://doi.
org/10.21062/ujep/x.2012/a/1213-2489/MT/12/2/140.

31.  Liu X. Prediction of belt conveyor idler performance. TRAIL Research School 2016.
32.  Liu X, Pang Y, Lodewijks G, He D. Experimental research on condition monitoring of belt conveyor idlers. Measurement 2018; 127: 277-

282, https://doi.org/10.1016/j.measurement.2018.04.066.
33.  Liu X, Pei D, Lodewijks G et al. Acoustic signal based fault detection on belt conveyor idlers using machine learning. Advanced Powder 

Technology 2020; 31(7): 2689-2698, https://doi.org/10.1016/j.apt.2020.04.034.
34.  Liu Y, Miao C, Li X et al. Research on the fault analysis method of belt conveyor idlers based on sound and thermal infrared image features. 

Measurement 2021; 186: 110177, https://doi.org/10.1016/j.measurement.2021.110177.
35.  Magar S, Narhare T, Gaikwad A, Kapade N. A Review on Improvement of Hydrodynamic Journal Bearing by using Bio-Lubricant. International 

Journal for Research in Applied Science & Engineering Technology 2021; 9(VI): 1052-1055, https://doi.org/10.22214/ijraset.2021.35162.
36.  Miskovic Z, Mitrovic R, Stamenic Z et al. The development and application of the new methodology for conveyor idlers fits testing. Procedia 

Structural Integrity 2018; 13: 2143-2151, https://doi.org/10.1016/j.prostr.2018.12.150.
37.  Morales A S, Aqueveque P, Henriquez J A et al. A technology review of idler condition based monitoring systems for critical overland 

conveyors in open-pit mining applications. IEEE Xplore 2017: 1-8, https://doi.org/10.1109/IAS.2017.8101839.
38.  Nowakowski T, Komorski P. Diagnostics of the drive shaft bearing based on vibrations in the high-frequency range as a part of the 

vehicle's self-diagnostic system. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2022; 24(1): 70-7, https://doi.org/10.17531/
ein.2022.1.9.

39.  Olchówka D, Rzeszowska A, Jurdziak L, Błażej R. Statistical Analysis and Neural Network in Detecting Steel Cord Failures in Conveyor 
Belts. Energies 2021; 14(11): 3081, https://doi.org/10.3390/en14113081.

40.  Pariaman H, Luciana G M, Wisyaldin M K, Hisjam M. Anomaly Detection Using LSTM-Autoencoder to Predict Coal Pulverizer Condition 
on Coal-Fired Power Plant. EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy 2021; 9(1): 89-97, 
https://doi.org/10.5109/4372264.

41.  Peruń G, Opasiak T. Assessment of technical state of the belt conveyor rollers with use vibroacoustics methods - preliminary studies. 
Diagnostyka 2016; 17(1): 75-80.

42.  Pihnastyi O, Khodusov V, Kozhevnikov G, Bondarenko T. Analysis of Dynamic Mechanic Belt Stresses of the Magistral Conveyor. Lecture 
Notes in Mechanical Engineering, Springer Science and Business Media Deutschland GmbH: 2021: 186-195, https://doi.org/10.1007/978-
3-030-68014-5_19.

43.  Pytlik A, Trela K. Research on tightness loss of belt conveyor's idlers and its impact on the temperature increase of the bearing assemblies. 



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 24, No. 3, 2022 521

Journal of Sustainable Mining 2016; 15(2): 57-65, https://doi.org/10.1016/j.jsm.2016.07.001.
44.  Qin Z, Chen L, Bao X. Wavelet denoising method for improving detection performance of distributed vibration sensor. IEEE Photonics 

Technology Letters 2012; 24(7): 542-544, https://doi.org/10.1109/LPT.2011.2182643.
45.  Stanik Z. Vibro-acoustic Diagnostics of Rolling Bearings in Vessels. Transactions on Maritime Science 2014; 03(02): 111-118, https://doi.

org/10.7225/toms.v03.n02.002.
46.  Szrek J, Wodecki J, Błazej R, Zimroz R. An Inspection Robot for Belt Conveyor Maintenance in Underground Mine-Infrared Thermography 

for Overheated Idlers Detection. Applied Sciences 2020; 10(14): 4984, https://doi.org/10.3390/app10144984.
47.  Szurgacz D, Zhironkin S, Vöth S et al. Thermal Imaging Study to Determine the Operational Condition of a Conveyor Belt Drive System 

Structure. Energies 2021; 14(11): 3258, https://doi.org/10.3390/en14113258.
48.  Ursel T, Olinski M. Estimation of objects instantaneous displacement using inertial sensors (in Polish). Interdisciplinary Journal of 

Engineering Sciences 2019; VII(1): 46-52.
49.  Vasić M, Stojanović B, Blagojević M. Failure analysis of idler roller bearings in belt conveyors. Engineering Failure Analysis 2020; 117: 

104898, https://doi.org/10.1016/j.engfailanal.2020.104898.
50.  Vos K, Peng Z, Jenkins C et al. Vibration-based anomaly detection using LSTM/SVM approaches. Mechanical Systems and Signal Processing 

2022; 169: 108752, https://doi.org/10.1016/j.ymssp.2021.108752.
51.  Wei Y, Wu W, Liu T, Sun Y. Study of coal mine belt conveyor state on-line monitoring system of based on DTS. Fourth Asia Pacific Optical 

Sensors Conference 2013; 8924: 89242I, https://doi.org/10.1117/12.2034277.
52.  Wodecki J, Michalak A, Zimroz R. Local damage detection based on vibration data analysis in the presence of Gaussian and heavy-tailed 

impulsive noise. Measurement 2021; 169: 108400, https://doi.org/10.1016/j.measurement.2020.108400.
53.  Wodecki J, Zdunek R, Wyłomańska A, Zimroz R. Local fault detectionof rolling element bearing components by spectrogram clustering with 

Semi-Binary NMF. Diagnostyka 2017; 18(1): 3-8.
54.  Zak G, Obuchowski J, Wylomanska A, Zimroz R. Novel 2D representation of vibration for local damage detection. Mining Science 2014; 

21: 105-113.
55.  Zhao L, Lin Y. Typical Failure Analysis and Processing of Belt Conveyor. Procedia Engineering 2011; 26: 942-946, https://doi.org/10.1016/j.

proeng.2011.11.2260.
56.  Zimroz P, Shiri H, Wodecki J. Analysis of the vibro-acoustic data from test rig -comparison of acoustic and vibrational methods. IOP 

Conference Series: Earth and Environmental Science 2021, https://doi.org/10.1088/1755-1315/942/1/012017.
57.  Zimroz R, Król R. Failure analysis of belt conveyor systems for condition monitoring purposes. Mining Science 2009; 128(36): 255-270.
58.  Wavelet signal denoising - MATLAB wdenoise. [https://www.mathworks.com/help/wavelet/ref/wdenoise.html].
59.  1-D median filtering - MATLAB medfilt1. [https://www.mathworks.com/help/signal/ref/medfilt1.html#description].
60.  Butterworth filter design - MATLAB butter. [https://www.mathworks.com/help/signal/ref/butter.html].
61.  Condition Monitoring and Prognostics Using Vibration Signals - MATLAB & Simulink. [https://www.mathworks.com/help/predmaint/ug/

condition-monitoring-and-prognostics-using-vibration-signals.html].


