PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-Criteria Decision Analysis (MCDA) methods in Life-Cycle Assessment (LCA) : a comparison of private passenger vehicles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Analogies between the life cycle assessment (LCA) and multicriteria decision analysis (MCDA) methodologies have been discussed as well as LCA as an MCDA problem for resolving the trade-offs between multiple environmental objectives. The objective of this study is to compare a variety of specialised multicriteria methods and knowledge-based methods used to aggregate the results from LCA. The studies were conducted using examples of LCA on private passenger vehicles. The research used two classical methods for multicriteria decision making (AHP and TOPSIS), the method of conventional (crisp) reasoning and Mamdani’s method of fuzzy inference. The results demonstrate that among the methods analysed, only crisp reasoning does not provide satisfactory results.
Rocznik
Strony
5--26
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
autor
  • Faculty of Management, AGH University of Science and Technology, ul. Gramatyka 10, 30-067 Krakow, Poland
autor
  • Faculty of Management, AGH University of Science and Technology, ul. Gramatyka 10, 30-067 Krakow, Poland
Bibliografia
  • [1] BAUER C., HOFER J., ALTHAUS H.-J., DEL DUCE A., SIMONS A., The environmental performance of current and future passenger vehicles. Life cycle assessment based on a novel scenario analysis framework, Appl. Energy, 2015, 157, 871–883.
  • [2] BENOIT V., ROUSSEAUX P., Aid for aggregating the impacts in Life Cycle assessment, Int. J. Life Cycle Assess., 2003, 8 (2), 74–82.
  • [3] BOUWMAN M.E., MOLL H.C., Environmental analyses of land transportation systems in The Netherlands, Transp. Res. Part D Transp. Environ., 2002, 7 (5), 331–345.
  • [4] CHEVALIER J., ROUSSEAUX P., Classification in LCA. Building of a coherent family of criteria, Int. J. Life Cycle Assess., 1999, 4 (6), 352–356.
  • [5] COYLE G., The Analytic Hierarchy Process (AHP). Practical strategy. Structured tools and techniques, open access material, Pearson Education Ltd., Glasgow 2004.
  • [6] DAHLBO H., KOSKELA S., PIHKOLA H., NORS M., FEDERLEY M., SEPPÄLÄ J., Comparison of different normalised LCIA results and their feasibility in communication, Int. J. Life Cycle Assess., 2013, 18 (4), 850–860.
  • [7] DIAS L.C., DOMINGUES A.R., On multicriteria sustainability assessment. Spider-gram surface and dependence biases, Appl. Energy, 2014, 113, 159–163.
  • [8] DOMINGUES A.R., MARQUES P., GARCIA R., FREIRE F., DIAS L.C., Applying multicriteria decision analysis to the lifecycle assessment of vehicles, J. Clean. Prod., 2015, 107, 749–759.
  • [9] EEA, Annual European Union greenhouse gas inventory 1990–2014 and inventory report 2016, EEA Report No. 15/2016.
  • [10] EEA, European Union emission inventory report 1990–2014 under the UNECE Convention on Longrange Transboundary Air Pollution (LRTAP), EEA Report No. 9/2017.
  • [11] ELGHALI L., COWELL S.J., BEGG K.G., CLIFT R., Support for sustainable development policy decisions. A case study from highway maintenance, Int. J. Life Cycle Assess., 2006, 11 (1), 29–39.
  • [12] Fuels Europe, Statistical Report 2016.
  • [13] GAUDREAULT C., SAMSON R., STUART P., Implications of choices and interpretation in LCA for multicriteria process design. De-inked pulp capacity and cogeneration at a paper mill case study, J. Clean. Prod., 2009, 17 (17), 1535–1546.
  • [14] GUINÉE J., HEIJUNGS R., HUPPES G., KLEIJN R., DE KONING A., VAN OERS L., WEGENER SLEESWIJK A., SUH S., UDO DE HAES H.A., DE BRUIJN H., VAN DUIN R., HUIJBREGTS M.A.J., GORREE M., Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards, Kluwer Academic Publishers, 2002.
  • [15] HUPPES G., VAN OERS L., Background review of existing weighting approaches in life cycle impact assessment (LCIA), JRC Scientific and Technical Reports, EUR, 2011.
  • [16] JESWANI H.K., AZAPAGIC A., SCHEPELMANN P., RITTHOFF M., Options for broadening and deepening the LCA approaches, J. Clean. Prod., 2010, 18 (2), 120–127.
  • [17] JEYA GIRUBHA R., VINODH S., Application of fuzzy VIKOR and environmental impact analysis for material selection of an automotive component, Mater. Des., 2012, 37 (Supplement C), 478–486.
  • [18] KIKER G.A., BRIDGES T.S., VARGHESE A., SEAGER T.P., LINKOV I., Application of multicriteria decision analysis in environmental decision making, Integr. Environ. Assess. Manage., 2005, 1 (2), 95–108.
  • [19] MACIOL A., REBIAS B., Advanced Methods in Investment Projects Evaluation, AGH University of Science and Technology Press, Krakow 2016.
  • [20] MAMDANI E.H., ASSILIAN S., An experiment in linguistic synthesis with a fuzzy logic controller, Int. J. Man. Mach. Stud., 1975, 7, 1–13.
  • [21] MESSAGIE M., BOUREIMA F.-S., COOSEMANS T., MACHARIS C., VAN MIERLO J., A range-based vehicle life cycle assessment incorporating variability in the environmental assessment of different vehicle technologies and fuels, Energies, 2014, 7 (3), 1467–1482.
  • [22] MESSAGIE M., MACHARIS C., VAN MIERLO J., Key outcomes from life cycle assessment of vehicles, a state of the art literature review, World Electric Vehicle Symposium and Exhibition (EVS27) 2013, 2013, 1–9.
  • [23] MYLLYVIITA T., LESKINEN P., SEPPÄLÄ J., Impact of normalisation, elicitation technique and background information on panel weighting results in life cycle assessment, Int. J. Life Cycle Assess., 2014, 19 (2), 377–386.
  • [24] NARAYANAN D., ZHANG Y., MANNAN M.S., Engineering for sustainable development (ESD) in biodiesel production, Proc. Safety Environ. Prot., 2007, 85 (5), 349–359.
  • [25] NEMRY F., LEDUC G., MONGELLI I., UIHLEIN A., Environmental Improvement of Passenger Cars (IMPRO-car), JRC Scientific and Technical Reports, Seville 2008.
  • [26] OLSON D.L., Decision Aids for Selection Problems, Springer, 1996.
  • [27] OLSON D.L., Comparison of weights in TOPSIS models, Math. Comp. Model., 2004, 40 (7–8), 721–727.
  • [28] PARSONS S., Current approaches to handling imperfect information in data and knowledge bases, Knowl. Data Eng. IEEE Trans., 1996, 8, 353–372.
  • [29] PEARL J., Probabilistic Reasoning in Intelligent Systems. Networks of Plausible Inference, Morgan Kaufmann Publishers, Inc., San Francisco, CA, USA, 1988.
  • [30] PELZER E., FORTINO G., BOCKSTALLER C., ANGEVIN F., LAMINE C., MOONEN C., VASILEIADIS V., GUÉRIN D., GUICHARD L., REAU R., MESSÉAN A., Assessing innovative cropping systems with DEXiPM, a qualitative multicriteria assessment tool derived from DEXi, Ecol. Indic., 2012, 18, 171–182.
  • [31] PERIMENIS A., WALIMWIPI H., ZINOVIEV S., MÜLLER-LANGER F., MIERTUS S., Development of a decision support tool for the assessment of biofuels, Energy Policy, 2011, 39 (3), 1782–1793.
  • [32] PRADO-LOPEZ V., SEAGER T.P., CHESTER M., LAURIN L., BERNARDO M., TYLOCK S., Stochastic multiattribute analysis (SMAA) as an interpretation method for comparative lifecycle assessment (LCA), Int. J. Life Cycle Assess., 2014, 19 (2), 405–416.
  • [33] RĘBIASZ B., MACIOŁ A., Comparison of classical multicriteria decision making methods with fuzzy rule-based methods on the example of investment projects evaluation, [In:] R. Neves-Silva, L.C. Jain, R.J. Howlett (Eds.), Intelligent Decision Technologies, Proc. 7th KES International Conference on Intelligent Decision Technologies, Springer International Publishing, Cham 2015, 549–561.
  • [34] ROGERS K., SEAGE T.P., Environmental decision-making using life cycle impact assessment and stochastic multiattribute decision analysis. A case study on alternative transportation fuels, Environ. Sci. Technol., 2009, 43 (6), 1718–1723.
  • [35] SAATY T.L., The Analytic Hierarchy Process. Planning, Priority Setting, Resource Allocation, McGraw-Hill, New York 1980.
  • [36] SAFAEI MOHAMADABADI H., TICHKOWSKY G., KUMAR A., Development of a multicriteria assessment model for ranking of renewable and non-renewable transportation fuel vehicles, Energy, 2009, 34 (1), 112–125.
  • [37] SHAMAA M.S., VINODH S., JAYAKRISHNA K., Integrated life cycle assessment and activity based life cycle costing approach for an automotive product, Sci. Iran. E., 2015, 22 (3), 1179–1188.
  • [38] SHIH H.-S., SHYUR H.-J., LEE E.S., An extension of TOPSIS for group decision making, Math. Comput. Model., 2007, 45 (7), 801–813.
  • [39] SOARES S.R., TOFFOLETTO L., DESCHÊNES L., Development of weighting factors in the context of LCIA, J. Clean. Prod., 2006, 14 (6–7), 649–660.
  • [40] Impact categories, normalisation and weighting in LCA, H.K. Stranddorf, L. Hoffmann, A. Schmidt (Eds.), available from: http://lca-center.dk/wp-content/uploads/2015/08/LCA-technical-report-impact -categories-normalisation-and-weighting-in-LCA.pdf, 2005.
  • [41] TAN R.R., CULABA A.B., PURVIS M.R.I., POLCAGE 1.0 – a possibilistic lifecycle assessment model for evaluating alternative transportation fuels, Environ. Model. Soft., 2004, 19 (10), 907–918.
  • [42] ZHOU Z., JIANG H., QIN L., Life cycle sustainability assessment of fuels, Fuel, 2007, 86 (1–2), 256–263.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2409620-5ec0-4d32-a77e-07bc620c7724
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.