PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractional heat conduction in a rectangular plate with bending moments

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this research work, we consider a thin, simply supported rectangular plate defined as 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c and determine the thermal stresses by using a thermal bending moment with the help of a time dependent fractional derivative. The constant temperature is prescribed on the surface y = 0 and other surfaces are maintained at zero temperature. A powerful technique of integral transform is used to find the analytical solution of initial-boundary value problem of a thin rectangular plate. The numerical result of temperature distribution, thermal deflection and thermal stress component are computed and represented graphically for a copper plate.
Rocznik
Strony
115--126
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
  • Department of Mathematics, Laxminarayan Institute of Technology, R.T.M.N.U. Nagpur 440033 Maharashtra, India
Bibliografia
  • [1] Tanigawa, Y., & Komatsubara, Y. (1997). Thermal stress analysis of a rectangular plate and its thermal stress intensity factor for compressive stress field. Journal of Thermal Stress, 20, 517-542.
  • [2] Gugulwar, V.S., & Deshmukh, K.C. (2004). Thermal stresses in a rectangular plate due to partially distributed heat supply. Far East Journal of Applied Mathematics, 16, 197-212.
  • [3] Kulkarni, V.S., & Deshmukh, K.C. (2007). A brief note on quasi-static thermal stresses in a rectangular plate. Far East Journal of Applied Mathematics, 26, 349-360.
  • [4] Deshmukh, K.C., Khandait, M.V., & Kumar, R. (2014). Thermal stresses in a simply supported plate with thermal bending moments with heat sources. Materials Physics and Mechanics, 21, 135-146.
  • [5] Sherief, H., El-Sayed, A., & Abd El-Latief, A.M. (2010). Fractional order theory of thermoelasticity. International Journal of Solids and Structures, 47, 269-275.
  • [6] Povstenko, Y. (2004). Fractional heat conduction equation and associated thermal stresses. Journal of Thermal Stresses, 28, 83-102.
  • [7] Povstenko, Y. (2009). Thermoelasticity which uses fractional heat conduction equation. Journal of Mathematical Science, 162, 296-305.
  • [8] Povstenko, Y. (2009). Theory of thermoelasticity based on the space-time-fractional heat conduction equation. Physica Scripta, T136014017, 1-6.
  • [9] Povstenko, Y. (2010). Signaling problem for time-fractional diffusion-wave equation in a half--plane in the case of angular symmetry. Nonlinear Dynamics, 59, 593-605.
  • [10] Povstenko, Y. (2010). Fractional Cattaneo-type equations and generalized thermoelasticity. Journal of Thermal Stresses, 34, 97-114.
  • [11] Povstenko, Y. (2012). Theories of thermal stresses based on space-time fractional telegraph equations. Computational and Applied Mathematics, 64, 3321-3328.
  • [12] Raslan, W.E. (2015). Application of fractional order theory of thermoelasticity in a thick plate under axisymmetric temperature distribution. Journal of Thermal Stresses, 38, 733-743.
  • [13] Warbhe, S.D., Tripathi, J.J., Deshmukh, K.C., & Verma, J. (2017). Fractional heat conduction in a thin circular plate with constant temperature distribution and associated thermal stresses. Journal of Heat Transfer, 139, 044502-1 to 044502-4.
  • [14] Warbhe, S.D., Tripathi, J.J., Deshmukh, K.C., & Verma, J. (2018). Fractional heat conduction in a thin hollow circular disk and associated thermal deflection. Journal of Thermal Stresses, 41(2), 262-270.
  • [15] Tripathi, J.J., Warbhe, S.D., Deshmukh, K.C., & Verma, J. (2017). Fractional order thermoelastic deflection in a thin circular plate. Applications and Applied Mathematics: An International Journal, 12, 898-909.
  • [16] Tripathi, J.J., Warbhe, S.D., Deshmukh, K.C., & Verma, J. (2018). Fractional order generalized thermoelastic response in a half space due to a periodically varying heat source. Multidiscipline Modeling in Materials and Structures, 14, 2-15.
  • [17] Noda, N., Hetnarski, R.B., & Tanigawa, Y. (2003). Thermal Stresses. 2nd eds., New York: Taylor & Francis.
  • [18] Ozisik, M.N. (1968). Boundary Value Problem of Heat Conduction. Scranton, PA: International Textbook Co.
  • [19] Sneddon, I.N. (1972). The Use of Integral Transforms. New York: McGraw Hill.
  • [20] Povstenko, Y. (2015). Linear Fractional Diffusion-Wave Equation for Scientists and Engineers. New York: Birkhäser.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b23fa0c1-f7e8-425a-bedd-3be4f19a77e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.