Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In [5] it was shown that two number fields have isomorphic Witt rings of quadratic forms if and only if there is a Hilbert symbol equivalence between them. A Hilbert symbol equivalence between two number fields K and L is a pair of maps(t,T), where t: K ∗/K∗2→L∗/L∗2 is a group isomorpism and T: ΩK→Ω L is a bijection between the sets of finite and infinite primes of K and L, respectively, such that the Hilbert symbols are preserved: for any a; b∈K∗=K∗2and for any P∈ΩK,(a; b)P= (t(a), t(b))T(P) A Hilbert symbol equivalence between the field Q and itself is called rational self-equivalence. In [5] the authors present a construction of equivalence of two fields starting from the so called Hilbert small equivalence of two fields. We use this idea for constructing infinite set of rational self-equivalences.
Rocznik
Tom
Strony
117--132
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
Bibliografia
- [1] J. Browkin. Teoria ciał (Fields Theory).Biblioteka Matematyczna 49,PWN, Warsaw 1978. (In Polish).
- [2] J.W.S. Cassels, A. Fröhlich (Eds.) Algebraic Number Theory. Academic Press, London 1967.
- [3] A. Czogała. On reciprocity equivalence of quadratic number fields. Acta Arithmetica ,58, No. 1, 27-46, 1981.
- [4] A. Czogała. Równoważność Hilberta ciał globalnych . (Hilbert Symbol Equivalence of Global Fields). Wydawnictwo Uniwersytetu Śląskiego, Katowice 2001. (In Polish).
- [5] R. Perlis, K. Szymiczek, P.E. Conner, R. Litherland. Matching Witts with global fields. In: W.B. Jacob, T.-Y. Lam, R.O. Robson (Eds.),Recent Advances in Real Algebraic Geometry and Quadratic Forms,(Proc. RAGSQUAD Year, Berkeley 1990-1991),Contemporary Mathematics,155, 365-387, Amer. Math. Soc. Providence, Rhode Island 1994.
- [6] J.-P. Serre. A Course in Arithmetic . Springer-Verlag, New York 1973.
- [7] K. Szymiczek. Bilinear Algebra: an Introduction to the Algebraic Theory of Quadratic Forms. Algebra, Logic and Applications Series Vol. 7, Gordon and Breach Science Publishers, Amsterdam 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2340794-071b-4847-a1f1-edeed6d82b57