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Abstract
In [5] it was shown that two number fields have isomorphic Witt rings of
quadratic forms if and only if there is a Hilbert symbol equivalence between them.
A Hilbert symbol equivalence between two number fields K and L is a pair
of maps (t, T ), where t : K∗/K∗2 → L∗/L∗2 is a group isomorpism and
T : ΩK → ΩL is a bijection between the sets of finite and infinite primes of K and
L, respectively, such that the Hilbert symbols are preserved: for any a, b ∈ K∗/K∗2

and for any P ∈ ΩK ,

(a, b)P = (t(a), t(b))T (P ).

A Hilbert symbol equivalence between the field Q and itself is called rational self-

equivalence. In [5] the authors present a construction of equivalence of two fields

starting from the so called Hilbert small equivalence of two fields. We use this idea

for constructing infinite set of rational self-equivalences.

1. Introduction

Consider the field Q of all rational numbers. Let P denote the set of all
prime numbers together with the symbol ∞. For every prime number,
a complement Qp of the field Q is defined with the help of valua-
tion vp called a p-adic number field. Moreover, we agree that Q∞ = R is
a complement of the field Q with respect to the usual absolute value (cf. [1]).

Definition 1.1. Let t be an automorphism of the group of square classes

t : Q∗/Q∗2 → Q∗/Q∗2



118 Marcin Stępień

and T be a bijection of the form

T : P→ P

preserving Hilbert symbols in the sense that

(a, b)p = (t(a), t(b))T (p)

for all a, b ∈ Q∗/Q∗2 and all p ∈ P. The pair (t, T ) is said to be a Hilbert
symbol rational self-equivalence.

The notion of rational self-equivalence is a special case of Hilbert symbol
equivalence of fields, where the prime numbers are replaced by prime ideals
of global fields (cf. [4], [5]).

From [5] we know that two number fields have isomorphic Witt rings
if there exists Hilbert symbol equivalence (see the above definition) beetwen
them, called in [5] reciprocity equivalence of fields (cf. [5], Theorem 1). It was
shown in [5] that the bijection t defined above induces the strong isomor-
phism of Witt rings of those fields (more about the isomorphisms of Witt
rings the reader can find in [7]). The authors have presented a construc-
tion of Hilbert symbol equivalence of fields starting with the so-called small
equivalence. We shall use this idea for constructing rational self-equivalences.
We recall some notions and facts (cf. [3], [4], [5]) which are used in the next
part of the present paper.

A finite, nonempty set S ⊂ P containing 2 and ∞ is called sufficiently
large.

Let S be a sufficiently large set of prime numbers S = {p1, . . . , pn} and
assume that p1 = ∞, p2 = 2. We define the set of S-singular elements as
follows:

ES = {x ∈ Q∗ : vp(x) ≡ 0 (mod 2) for all p /∈ S}.
Notice that ES is a subgroup of the multiplicative group of the field Q

containing all squares of rational numbers. Therefore, the quotient group
ES/Q∗2 is a subgroup of the group Q∗/Q∗2.

By the definition of the set ES , we get that every element x ∈ Q has
the following factorization

x = (−1)e122k2+e2p2k3+e3
3 · · · p2kn+en

n q2l1
1 · · · q2lm

m ,

where q1, q2, . . . , qm /∈ S are prime numbers, ki, li ∈ Z and ei ∈ {0, 1}. Then

xQ∗2 = (−1)e12e2pe3
3 · · · pen

n Q∗2.
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It follows that the elements of the group ES/Q∗2 are represented by the
integers of the form (−1)e12e2pe3

3 · · · pen
n in the unique way.

For every p ∈ P, the natural imbedding of the field Q in the field Qp

induces the group homomorphism ip : Q∗/Q∗2 → Q∗
p/Q∗2

p which is surjective.
For the finite set S = {p1, . . . , pn} ⊂ P we get the dual homomorphism

diagS : Q∗/Q∗2 −→
∏

p∈S

Q∗
p/Q∗2

p

defined by

diagS(a) = [ip1(a), . . . , ipn(a)] = [aQ∗2
p1

, . . . , aQ∗2
pn

].

Let us introduce the following notation GS :=
∏

p∈S Q∗
p/Q∗2

p . The restriction
of the homomorphism diag to the set ES/Q∗2 is denoted by iS .

Definition 1.2. Let S be sufficiently large set of prime numbers defined as
above. A small S-equivalence is a pair R = ((tp)p∈S , T ), where

1) T : S → T (S) is a bijection,

2) there exists the isomorphism of the groups of square classes
tS : ES/Q∗2 → ET (S)/Q∗2,

3) (tp)p∈S is a family of local isomorphisms tp : Q∗
p/Q∗2

p → Q∗
T (p)/Q∗2

T (p)
preserving Hilbert symbols, i.e.

(a, b)p = (tp(a), tp(b))T (p) for all a, b ∈ Q∗
p/Q∗2

p ,

4) the following diagram commutes

ES/Q∗2 iS−→
∏

p∈S

Q∗
p/Q∗2

p

↓ tS ↓ ∏
tp

ET (S)/Q∗2 iT (S)−→
∏

p∈S

Q∗
T (p)/Q∗2

T (p)

We shall show that the small S-equivalence defined on arbitrary suffi-
ciently large set S can be extended to rational self-equivalence. Next we will
present how to change the construction in order to get the infinite set of
rational self-equivalences.
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2. The construction of rational self-equivalence

Let S = S2 = {∞, 2}. It is easy to construct the natural small S2-equiva-
lence. It suffices to define the map T by T (p) = p for both p ∈ S2, so we
have T (S2) = S2 and we define the map tp as follows: t∞ : R∗/R∗2 → R∗/R∗2

as identity and t2 : Q∗
2/Q∗2

2 → Q∗
2/Q∗2

2 as identity too. Then the pair
((tp)p∈S2 , T ) is a natural small S2-equivalence, and suitable conditions of
the definition are fulfilled in the obvious way.

Lemma 2.1. Let p3, q3 be a prime numbers outside of S2 and assume that
S3 := S2 ∪ {p3} = {∞, 2, p3} and T (S3) := S2 ∪ {q3} = {∞, 2, q3}. If
p3 ≡ q3(mod 8), then there exists a small S3-equivalence.

P r o o f. It is obvious that S3 and T (S3) are sufficiently large sets.
We define the bijection T in the following way:

T (∞) =∞, T (2) = 2 and T (p3) = q3.

Now we define the maps tp for all p ∈ S3. We do not change the maps t∞ and
t2, that is let t∞ : R∗/R∗2 → R∗/R∗2 be identity and t2 : Q∗

2/Q∗2
2 → Q∗

2/Q∗2
2

be identity too. Next, let tp3 : Q∗
p3

/Q∗2
p3
→ Q∗

q3
/Q∗2

q3
be an isomorphism from

the group Q∗
p3

/Q∗2
p3

:= {1, p3, u, up3} to the group Q∗
q3

/Q∗2
q3

:= {1, q3, v, vq3}
defined by

tp3(1) = 1, tp3(p3) = q3, tp3(u) = v, tp3(up3) = vq3.

The maps t∞ and t2 are identities, so they preserve Hilbert symbols in
the obvious way. We shall show that tp3 preserves the Hilbert symbol too.

As we know, the Legendre symbol
(

u
p3

)
= −1 in the group Q∗

p3
/Q∗2

p3
.

By the properties of the Hilbert symbol (cf. [6], Theorem 3, p. 23), we get:

1) (a, 1)p3 = 1 for every a ∈ Q∗
p3

/Q∗2
p3

2) (p3, p3)p3 = (−1, p3)p3 =
(
−1
p3

)

3) (u, u)p3 = (−1, u)p3 = 1

4) (p3, u)p3 =
(

u
p3

)
= −1

5) (p3, up3)p3 = (p3, u)p3 · (p3, p3)p3 = −1 · (−1, p3)p3 = −
(
−1
p3

)
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6) (u, up3)p3 = (u, u)p3 · (u, p3)p3 = 1 · (−1) = −1

7) (up3, up3)p3 = (u, up3)p3 · (p3, up3)p3 = −1 ·
(
−

(
−1
p3

))
=

(
−1
p3

)

The above Hilbert symbols depend only on Legendre symbols, so from
the condition p3 ≡ q3(mod 8) it follows that we get the same values of
Hilbert symbols ( , )q3 defined with the map tp3 in the group Q∗

q3
/Q∗2

q3
.

Moreover, if a, b ∈ Q∗ are in the same square class in the group Q∗
p3

/Q∗2
p3

,
then their images by the map tp3 belong to the same square class in the group
Q∗

q3
/Q∗2

q3
and the Hilbert symbols are preserved in a similar way as above.

Hence, the maps tpi
preserve Hilbert symbols for all pi ∈ S3, i = 1, 2, 3.

Now we are going to show the commutativity of the diagram.
Notice that in our case the both groups ES3/Q∗2 and ET (S3)/Q∗2 have 8
elements. It suffices to show the commutativity of the following diagram on
the generators of the group ES3/Q∗2:

ES3/Q∗2 iS3−→ R∗/R∗2 ×Q∗
2/Q∗2

2 ×Q∗
p3
/Q∗2

p3

↓ tS3
↓ ∏

tpi

ET (S3)/Q∗2 iT (S3)−→ R∗/R∗2 ×Q∗
2/Q∗2

2 ×Q∗
q3
/Q∗2

q3

1. It is obvious that for a = 1 ∈ ES3/Q∗2 the diagram commutes.

2. Analogously, the diagram commutes for a = −1.
In fact, going from ES3/Q∗2 to the right, we get

(
∏

tpi
◦ iS3)(−1) =

∏
tpi

(iS3(−1)) =
∏

tpi
(i∞(−1), i2(−1), ip3(−1)) =

=
∏

tpi
(−1,−1,−1) = (−1,−1,−1)

and, on the other hand, going down, we get

(iT (S3) ◦ tS3)(−1) = iT (S3)(tS3(−1)) = iT (S3)(tS3((−1)1 · 20 · p0
3)) =

= iT (S3)((−1)1 · 20 · q0
3) = iT (S3)(−1) =

= (i∞(−1), i2(−1), iq3(−1)) = (−1,−1,−1).

It remains to check commutativity on 2 generators of the group ES3/Q∗2.

3. Let a = 2. Then

(
∏

tpi
◦ iS3)(a) = (

∏
tpi
◦ iS3)(2) =

∏
tpi

(iS3(2)) =

=
∏

tpi
(i∞(2), i2(2), ip3(2)) = =

∏
tpi

(2, 2, 2) = (1, 2, tp3(2))
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and, on the other hand,

(iT (S3) ◦ tS3)(2) = iT (S3)(tS3(2)) = iT (S3)(tS3((−1)0 · 21 · p0
3)) =

= iT (S3)((−1)0 · 21 · q0
3) = iT (S3)(2) = (i∞(2), i2(2), iq3(2)) = (1, 2, 2).

Since p3 ≡ q3(mod 8) , then
(

2
p3

)
=

(
2
q3

)
. Therefore, 2 ∈ {Q∗2

p3
, uQ∗2

p3
},

hence 2 is a square in Q∗
p3

/Q∗2
p3

if and only if it is a square in Q∗
q3
/Q∗2

q3
, hence

if 2 ∈ uQ∗2
p3

, then tp3(2) ∈ vQ∗2
q3

. It follows that tp3(2) = 2, what we need in
this case.

4. Now let a = p3. Then

(
∏

tpi
◦ iS3)(a) = (

∏
tpi
◦ iS3)(p3) =

∏
tpi

(iS3)(p3)) =

=
∏

tpi
(i∞(p3), i2(p3), ip3(p3)) = =

∏
tpi

(1, p3, p3) = (1, t2(p3), q3)

and, on the other hand, we get

(iT (S3) ◦ tS3)(p3) = iT (S3)(tS3(p3)) = iT (S3)(tS3((−1)0 · 20 · p1
3)) =

= iT (S3)((−1)0 · 20 · q1
3) = iT (S3)(q3) =

= (i∞(q3), i2(q3), iq3(q3)) = (1, q3, q3).

Observe that the condition p3 ≡ q3 (mod 8) implies p3q3 ≡ 1 (mod 8),
because in the ring Z/8Z every square of unit element equals to 1. By
Hensel’s Lemma (cf. [2], Appendix C, p. 83) it follows that p3q3 ∈ Q∗2

2 ,
hence p3 and q3 belong to the same square class in Q∗

2/Q∗2
2 . This means

that t2(p3) = q3, and we get commutativity in this case too.

The above steps 1.-4. fulfill requirements for commutativity of consid-
ered diagram for the elements of the group ES3/Q∗2. That finishes the proof
of existing required small S3-equivalence.

Remark 2.2. Notice that the condition p3 ≡ q3 (mod 4) is not sufficient.
In fact, let p3 = 5 and q3 = 17. Then p3 ≡ q3 (mod 4), but p3 6≡ q3 (mod 8)
and −1 =

(
2
5

)
6=

(
2
17

)
= 1, hence in this case we will not get commutativity

of the diagram, because we have 2 /∈ Q∗2
p3

and 2 ∈ Q∗2
q3

.

Lemma 2.3. Let ε1, ε2, . . . , εk ∈ {−1, 1} and let q1, q2, . . . , qk, k ∈ N be the
prime numbers. There exist infinite set of prime numbers q such that

(
q

qi

)
= εi, 1 ≤ i ≤ k.
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P r o o f. Let ε1, ε2, . . . , εk ∈ {−1, 1} and let q1, q2, . . . , qk be arbitrary prime

numbers. One can choose values ai such that 1 ≤ ai ≤ qi and
(

ai

qi

)
= εi (such

ai exist). By the Chinese remainder theorem, there exists a ∈ {1, 2, . . . ,m},
where m = q1 · . . . · qk such that a ≡ ai(mod qi). Then

(
a

qi

)
= εi =

(
ai

qi

)
,

since Legendre symbols depend on the residue from dividing by qi.
We construct an atrithmetic sequence

tl = a + l ·m, l = 1, 2, . . . ,∞. (1)

One could use Dirichlet’s theorem provided that (a,m) = 1. Assume that
(a,m) = b 6= 1, i.e. there exists b such that b|a and b|m. Then qi|b for
some i and a ≡ 0(mod qi) which contradicts ai 6≡ 0(mod qi). So we have
(a,m) = 1 and we can use Dirichlet’s theorem. Therefore, in the sequence
(1) there exist infinitely many prime numbers such that

(
tl
qi

)
= εi.

Lemma 2.4. Let Sk = {∞, 2, p3, p4, . . . , pk}, S′
k = {∞, 2, q3, q4, . . . , qk},

k ∈ N be two sufficiently large sets of prime numbers and assume that
RSk

= ((tp)p∈Sk
, T ) is a small Sk-equivalence. Let qk+1 be the smallest prime

number with qk+1 ∈ P \ S′
k and denote the set S′

k+1 : = S′
k ∪ {qk+1}. Then

the small Sk-equivalence RSk
can be extended to a small S′

k+1-equivalence.

P r o o f. Let Sk = {∞, 2, p3, p4, . . . , pk} and S′
k = {∞, 2, q3, q4, . . . , qk} be

two sufficiently large sets and assume that we get the small Sk-equivalence
with the maps ((tp)p∈Sk

, T ) by constructions of extending small equivalences
defined on the sets Si and S′

i, 3 ≤ i ≤ k.
Choose the smallest prime number pk+1 ∈ P \ Sk which fulfills the fol-

lowing conditions:

1) pk+1 ≡ qk+1 (mod 8),

2)
(

pi

pk+1

)
=

(
qi

qk+1

)
for all 3 ≤ i ≤ k

(by Lemma 2.3 there exist infinitely many such prime numbers).
Denote Sk+1 : = Sk ∪ {pk+1}. We define maps

tqi
: Q∗

qi
/Q∗2

qi
→ Q∗

pi
/Q∗2

pi
, 1 ≤ i ≤ k
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and
T ′ = T−1 : S′

k → Sk

as the inverse of the maps tpi
and T .

Next we set T ′(qk+1) = pk+1 and tqk+1
(qk+1) = pk+1, tqk+1

(uk+1) = vk+1.
We will show that the pair (tqk+1

, T ′) = (t−1
pk+1

, T−1) is the required small
S′

k+1-equivalence.
The condition pk+1 ≡ qk+1 (mod 8) guarantees the preserving of the

Hilbert symbols in the prime number qk+1 by analogous calculations as in
Lemma 2.1.

We will check now the commutativity of the suitable diagram. The group
ESk+1

/Q∗2 has 2k+1 elements. In this case we have

GSk+1
= R∗/R∗2 ×Q∗

2/Q∗2
2 ×Q∗

p3
/Q∗2

p3
× · · · ×Q∗

pk
/Q∗2

pk
×Q∗

pk+1
/Q∗2

pk+1
,

GS′

k+1
= R∗/R∗2 ×Q∗

2/Q∗2
2 ×Q∗

q3
/Q∗2

q3
× · · · ×Q∗

qk
/Q∗2

qk
×Q∗

qk+1
/Q∗2

qk+1
,

and the corresponding diagram has the following form

ES′

k+1
/Q∗2

iS′

k+1−→ GS′

k+1

↓ tS′

k+1
↓ ∏

tqi

ESk+1
/Q∗2 iSk+1−→ GSk+1

We will consider the commutativity on the generators of the group ES′

k+1
.

1. Let a = 2. Then∏
tqi

(iS′

k+1
(a)) =

∏
tqi

(iS′

k+1
(2)) =

∏
tqi

(2, . . . , 2) =

= (1, 2, tq3(2), . . . , tqk
(2), tqk+1

(2)).

On the other hand, we get

iSk+1
(tS′

k+1
(2)) = iSk+1

(tS′

k+1
((−1)0 · 21 · q0

3 · . . . · q0
k · q0

k+1)) =

= iSk+1
((−1)0 · 21 · p0

3 · . . . · p0
k · p0

k+1) = iSk+1
(2) = (1, 2, . . . , 2) .

Now we need to show that tpi
(2) = 2 for 3 ≤ i ≤ k + 1. By pi ≡ qi(mod 8)

and from the assumption of the way of extensions construction, we get the
above result for 1 ≤ i ≤ k. Since we have chosen the prime number pk+1

fulfilling the condition pk+1 ≡ qk+1(mod 8), then we get the result for i =
k + 1.
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2. Consider a = qs for any 3 ≤ s ≤ k. Then:
∏

tqi
(iS′

k+1
(qs)) =

∏
tqi

(iS′

k+1
(qs)) =

∏
tqi

(1, qs, . . . , qs) =

= (1, t2(qs), . . . , ps, . . . , tk(qs), tk+1(qs))

and, on the other hand,

iSk+1
(tS′

k+1
(qs)) = iSk+1

(tS′

k+1
((−1)0 · 20 · q0

3 · . . . · q1
s · . . . · q0

k · q0
k+1)) =

= iSk+1
((−1)0 · 20 · p0

3 · . . . · p1
s · . . . · p0

k · p0
k+1) = iSk+1

(ps) = (1, ps, . . . , ps).

Hence, we have to show that ti(qs) = ps for all 3 ≤ i ≤ k + 1.
Of course, it is true for 3 ≤ i ≤ k by induction hypothesis. Consider
i = k+1. Since we have

(
ps

pk+1

)
=

(
qs

qk+1

)
and ps ∈ {1, vk+1} ∈ Q∗

pk+1
/Q∗2

pk+1
,

then we get tk+1(qs) = ps.

3. It remains to check the element a = qk+1. We have:
∏

tqi
(iS′

k+1
(qk+1)) =

∏
tqi

(1, qk+1, . . . , qk+1) =

= (1, t2(qk+1), . . . , tk(qk+1), pk+1)

and, on the other hand,

iSk+1
(tS′

k+1
(qk+1)) = iSk+1

(tS′

k+1
((−1)0 · 20 · q0

3 · . . . · q0
k · q1

k+1)) =

= iSk+1
((−1)0 · 20 · p0

3 · . . . · p0
k · p1

k+1) = iSk
(pk+1) = (1, pk+1, . . . , pk+1).

Now by pk+1 ≡ qk+1(mod 8), it follows that t2(qk+1) = pk+1 and similarly

to the previous step of the proof, by
(

pk+1

pi

)
=

(
qk+1

qi

)
for 3 ≤ i ≤ k + 1, it

follows that ti(qk+1) = pk+1 for 3 ≤ i ≤ k + 1.

The diagram is commutative, what finishes the proof.

Theorem 2.5. The small S3-equivalence in Lemma 2.1 can be extended to
the rational self-equivalence.

P r o o f. We use induction on k, where k is the index of the following prime
numbers in the natural order.

Let k = 2. By Lemma 2.1, the natural small S2-equivalence can be
extended to a small S3-equivalence.

Now add a prime number outside of S3 and extend the obtained S3-
equivalence to some S′

4-equivalence with the help of analogous construction,
where S′

3 ⊆ S′
4. Then add another prime to the obtained set S4 and extend

the small equivalence. We can imagine the remaining prime numbers written
in two sequences {pi}∞i=1 and {qi}∞i=1 in natural order. Let us continue the
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procedure described above to extend the equivalences by adding the smallest
prime number pi outside of Si−1, (i > 1) to the set Si and choosing qi for
extending the small Si-equivalence, and then taking the smallest prime num-
ber qi+1 outside the set S′

i and choosing a prime number pi+1, for extending
to a small S′

i+1-equivalence.
In this way, we use all prime numbers in both sequences {pi}∞i=1 and

{qi}∞i=1. By Lemma 2.3, it follows that there exist infinitely many prime
numbers which fulfill the required conditions involving Legendre symbol, so
in every step of the construction described above the suitable diagram can
be made commutative and the small equivalence can be extended.

Suppose that we have a small Sk-equivalence for some odd prime number
k obtained by the construction described above. Then a small Sk-equivalence
can be extended to a small S′

k+1-equivalence by Lemma 2.4.
Continue the process of extending small equivalences for infinite se-

quences of prime numbers {pi}∞i=1 and {qi}∞i=1. By the following construc-
tions, we obtain the sets Si, S′

i such that S2 ⊆ Si, S
′
i, the bijection

T : P→ P

and the group isomorphisms

tpi
: Q∗

pi
/Q∗2

pi
→ Q∗

qi
/Q∗2

qi

preserving Hilbert symbols as follows

(x, y)pi
= (tpi

(x), tpi
(y))qi

for all x, y ∈ Q∗
pi

and all pi ∈ P \ Si.
Since any square-class x in Q∗/Q∗2 lies in the group ESk

/Q∗2 for some
finite set Sk containing S2, we can define an automorphism t of the group
Q∗/Q∗2 by setting

t(x) = tSk
(x).

The above construction assures us that for arbitrary i < j an isomorphism
tSj

is an extension of the isomorphism tSi
, hence the map t defined above

does not depend on the choice of the set Sk.
Therefore, the above construction is an extension of the small S3-equi-

valence defined in Lemma 2.1 to some rational self-equivalence (t, T ), as
required.

Theorem 2.6. Let S ⊆ P be a sufficiently large set. Any small S-equivalence
can be extended to a rational self-equivalence.
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Compare the proof of [5], Theorem 2.

Corollary 2.7. Let (t, T ) be a rational self-equivalence constructed as in the
proof of theorem 2.5. Then the map t : Q∗/Q∗2 → Q∗/Q∗2 induces a strong
automorphism in a Witt ring W (Q) of the field of rational numbers.

P r o o f follows from [5], Corollary 1.

3. Alternative constructions of rational self-equivalences

In this section, we shall show how to ramify the construction of rational self-
equivalence described in the previous section in order to get other rational
self-equivalences. By changing the choice of prime numbers, we will obtain
infinitely many rational self-equivalences. We shall present some examples
showing the first steps of such constructions made by complex computer
programme.

Let (P, <) denote the set of all prime numbers together with the
symbol ∞ ordered in a natural way by the relation < and under as-
sumption that p1 = ∞, p2 = 2. The construction described in the
proof of theorem 2.5 is based on choosing the smallest prime num-
ber which lies outside of the given sufficiently large set and fulfills
some required conditions. However, we can consider many permutations
of the set P of all prime numbers, that means we can consider the
ordered set (P, α) instead of (P, <), where α denotes another order
of prime numbers in P. Of course, there exist infinitely many such per-
mutations α.

One can suppose that any permutation α of the set P of all prime num-
bers leads to another way of choosing prime numbers and consequently gives
another rational self-equivalence. Below we shall show that this is not true.

We shall start with the case, where the procedure coincides with the
one described in theorem 2.5, so the following prime numbers are chosen
from the natural ordered set (P, <). Then we obtain the following sequence
of substitutions.

Let p1 = q1 =∞, p2 = q2 = 2. The first, smallest prime number outside
of the set S2 is p3 = 3. According to the described procedure, we choose a
prime number q3 which has the required properties for extension of small
S2-equivalence to small S3-equivalence as it was described in Lemma 2.1. It
turns out to be prime number 11. Let us denote this step of construction in
the following way:

1) p3 = 3→ 11 = q3.

(Notice that we have to assume that p3 6= q3. If we take p3 = q3, we get an
identity).
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Next, we take the smallest prime number q4 which was not used in a
sequence {qi}∞i=1. It is number 3. We choose for q4 = 3 the smallest prime
number p4 which has required properties. It is the number 19. Hence, we
denote the second step of the construction:
2) p4 = 19← 3 = q4.
Further constructions of small equivalences can be denoted as follows:

3) p5 = 5 → 13 = q5

4) p6 = 13 ← 5 = q6

5) p7 = 7 → 223 = q7

6) p8 = 1103 ← 7 = q8

7) p9 = 11 → 283 = q9

8) p10 = 6329 ← 17 = q10

9) p11 = 17 → 2689 = q11

10) p12 = 347 ← 19 = q12

11) p13 = 23 → 31159 = q13

12) p14 = 77551 ← 23 = q14

13) p15 = 29 → 109229 = q15

14) p16 = 138581 ← 29 = q16

15) p17 = 31 → 1010903 = q17 etc.

Therefore we get the following form of the map T : P→ P:

T (∞) =∞,
T (2) = 2,
T (3) = 11,
T (19) = 3,
T (5) = 13,
T (13) = 5,
T (7) = 223,
T (1103) = 7,
T (11) = 283,
T (6329) = 17,
T (17) = 2689,
T (347) = 19,
T (23) = 31159,
T (77551) = 23,
T (29) = 109229,
T (138581) = 29,
T (31) = 1010903, etc.

It turns out that not every permutation α of the set P of all prime num-
bers gives another rational self-equivalence. Assume that the prime numbers
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in a sequence {pi}∞i=1 are chosen from the set (P, <) ordered in a natuaral
way by the usual relation <, as before. Let us now choose the prime numbers
in a sequence {qi}∞i=1 from the set (P, α), where α is a permutation of the
set P such that the only difference between the considered case and (P, <)
is changing the places of the numbers 11 and 13.

Then the following searched prime numbers create the same sequences
as in the natural order of prime numbers, so we obtain the same rational
self-equivalence as before. The replacement of the numbers 11 and 13 does
not change the maps t and T which establish the rational self-equivalence.
This proves that not every permutation of the set P gives another rational
self-equivalence.

Now we shall show how to construct infinitely many rational self-equiva-
lences. Notice that according to Lemma 2.3, there exist infinitely many prime
numbers which can be chosen in step 1) for the number q3. The sufficiently
condition is p3 ≡ q3 (mod 8). If we take another prime number as q3, we get
another maps t and T and consequently another rational self-equivalence.
In fact, the map T is different if we take different numbers q3, namely the
difference is the value T (3). Similarly, by the definition of the map t in
theorem 2.6, it follows that different elements q3 give different map t. Thus,
in such a way we can construct infinitely many rational self-equivalences.

According to the described construction, searching prime numbers con-
tinues for all (infinitely many) prime numbers.

Example 1.

1) p3 = 3 → 19 = q3, then T (3) = 19

2) p4 = 11 ← 3 = q4, then T (11) = 3

3) p5 = 5 → 13 = q5, then T (5) = 13

4) p6 = 13 ← 5 = q6, then T (13) = 5

5) p7 = 7 → 1103 = q5, then T (7) = 1103

6) p8 = 223 ← 7 = q8, then T (223) = 7

7) p9 = 17 → 281 = q9, then T (17) = 281

8) p10 = 8707 ← 11 = q10, then T (8707) = 11

9) p11 = 19 → 347 = q11, then T (19) = 347

10) p12 = 4201 ← 17 = q12, then T (4201) = 17

11) p13 = 23 → 77551 = q13, then T (23) = 77551

12) p14 = 26119 ← 23 = q14, then T (26119) = 23

13) p15 = 29 → 9461 = q15, then T (29) = 9461

14) p16 = 228461 ← 29 = q16, then T (228461) = 29

15) p17 = 31 → 3498823 = q17, then T (31) = 3498823

etc.
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Example 2.

1) p3 = 3 → 43 = q3, then T (3) = 43

2) p4 = 11 ← 3 = q4, then T (11) = 3

3) p5 = 5 → 157 = q5, then T (5) = 157

4) p6 = 173 ← 5 = q6, then T (173) = 5

5) p7 = 7 → 23 = q5, then T (7) = 23

6) p8 = 647 ← 7 = q8, then T (647) = 7

7) p9 = 13 → 701 = q9, then T (13) = 701

8) p10 = 10939 ← 11 = q10, then T (10939) = 11

9) p11 = 17 → 4337 = q11, then T (17) = 4337

10) p12 = 20029 ← 13 = q12, then T (20029) = 13

11) p13 = 19 → 32987 = q13, then T (19) = 32987

12) p14 = 15649 ← 17 = q14, then T (15649) = 17

13) p15 = 23 → 276079 = q15, then T (23) = 276079

14) p16 = 887459 ← 19 = q16, then T (887459) = 19

15) p17 = 29 → 207029 = q17, then T (29) = 207029

etc.

Example 3.

1) p3 = 3 → 59 = q3, then T (3) = 59

2) p4 = 19 ← 3 = q4, then T (19) = 3

3) p5 = 5 → 37 = q5, then T (5) = 37

4) p6 = 13 ← 5 = q6, then T (13) = 5

5) p7 = 7 → 607 = q5, then T (7) = 607

6) p8 = 1831 ← 7 = q8, then T (1831) = 7

7) p9 = 11 → 43 = q9, then T (11) = 43

8) p10 = 179 ← 11 = q10, then T (179) = 11

9) p11 = 17 → 7489 = q11, then T (17) = 7489

10) p12 = 39733 ← 13 = q12, then T (39733) = 13

11) p13 = 23 → 84991 = q13, then T (23) = 84991

12) p14 = 56857 ← 17 = q14, then T (56857) = 17

13) p15 = 29 → 29789 = q15, then T (29) = 29789

14) p16 = 88747 ← 19 = q16, then T (88747) = 19

15) p17 = 31 → 308927 = q17, then T (31) = 308927

etc.
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Example 4.

1) p3 = 3 → 67 = q3, then T (3) = 67

2) p4 = 11 ← 3 = q4, then T (11) = 3

3) p5 = 5 → 13 = q5, then T (5) = 13

4) p6 = 173 ← 5 = q6, then T (173) = 5

5) p7 = 7 → 47 = q5, then T (7) = 47

6) p8 = 1367 ← 7 = q8, then T (1367) = 7

7) p9 = 13 → 461 = q9, then T (13) = 461

8) p10 = 83 ← 11 = q10, then T (83) = 11

9) p11 = 17 → 5393 = q11, then T (17) = 5393

10) p12 = 1801 ← 17 = q12, then T (1801) = 17

11) p13 = 19 → 51347 = q13, then T (19) = 51347

12) p14 = 9403 ← 19 = q14, then T (9403) = 19

13) p15 = 23 → 1007359 = q15, then T (23) = 1007359

14) p16 = 1419799 ← 23 = q16, then T (1419799) = 23

15) p17 = 29 → 2799941 = q17, then T (29) = 2799941

etc.

Example 5.

1) p3 = 3 → 83 = q3, then T (3) = 83

2) p4 = 19 ← 3 = q4, then T (19) = 3

3) p5 = 5 → 13 = q5, then T (5) = 13

4) p6 = 53 ← 5 = q6, then T (53) = 5

5) p7 = 7 → 31 = q5, then T (7) = 31

6) p8 = 463 ← 7 = q8, then T (463) = 7

7) p9 = 11 → 1291 = q9, then T (11) = 1291

8) p10 = 523 ← 11 = q10, then T (523) = 11

9) p11 = 13 → 5501 = q11, then T (13) = 5501

10) p12 = 3001 ← 17 = q12, then T (3001) = 17

11) p13 = 17 → 29401 = q13, then T (17) = 29401

12) p14 = 20507 ← 19 = q14, then T (20507) = 19

13) p15 = 23 → 190543 = q15, then T (23) = 190543

14) p16 = 342319 ← 23 = q16, then T (342319) = 23

15) p17 = 29 → 419189 = q17, then T (29) = 419189

etc.
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Example 6.

1) p3 = 3 → 107 = q3, then T (3) = 107

2) p4 = 19 ← 3 = q4, then T (19) = 3

3) p5 = 5 → 109 = q5, then T (5) = 109

4) p6 = 29 ← 5 = q6, then T (29) = 5

5) p7 = 7 → 79 = q5, then T (7) = 79

6) p8 = 311 ← 7 = q8, then T (311) = 7

7) p9 = 11 → 523 = q9, then T (11) = 523

8) p10 = 67 ← 11 = q10, then T (67) = 11

9) p11 = 13 → 22901 = q11, then T (13) = 22901

10) p12 = 9277 ← 13 = q12, then T (9277) = 13

11) p13 = 17 → 91873 = q13, then T (17) = 91873

12) p14 = 57737 ← 17 = q14, then T (57737) = 17

13) p15 = 23 → 345511 = q15, then T (23) = 345511

14) p16 = 384547 ← 19 = q16, then T (384547) = 19

15) p17 = 31 → 563183 = q17, then T (31) = 563183

etc.
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