PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Different fractional order models for an experimental smart beam system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The applicability of fractional calculus in system engineering outperforms classic identification techniques due to its ability to depict physical phenomena with increased accuracy. The present study explores the increased accuracy and flexibility of a fractional order model applied to an experimental smart beam depicting an airplane wing. The paper details the fractional order system identification of the beam and explores the possibility of realization of the model.
Rocznik
Strony
485--493
Opis fizyczny
Bibliogr. 24 poz., rys., wykr., tab.
Twórcy
  • Warsaw University of Technology, Department of Electrical Engineering, ISEP, 75 Koszykowa St., 00-662 Warsaw, Poland
autor
  • Technical University of Cluj-Napoca, Dept. of Automation, 28 Memorandumului St., 400114 Cluj-Napoca, Romania
  • Technical University of Cluj-Napoca, Dept. of Automation, 28 Memorandumului St., 400114 Cluj-Napoca, Romania
autor
  • Technical University of Cluj-Napoca, Dept. of Civil Engineering, 15C Daicoviciu St., 400020 Cluj-Napoca, Romania
Bibliografia
  • [1] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, 2010, DOI: 10.1007/978-1-4419-6397-0.
  • [2] C.M. Ionescu, “A memory-based model for blood viscosity”, Communications in Nonlinear Science and Numerical Simulation 45, 29–34 (2017), DOI: 10.1016/j.cnsns.2016.09.017.
  • [3] D. Tong, R. Wang, and H. Yang, “Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe”, Science in China Series G: Physics, Mechanics and Astronomy 48(4), 485–495 (2005), DOI: 10.1360/04yw0105.
  • [4] C.M. Ionescu and R.D. Keyser, “Relations between fractionalorder model parameters and lung pathology in chronic obstructive pulmonary disease”, IEEE Transactions on Biomedical Engineering 56(4), 978–987 (2009).
  • [5] C.M. Pinto and A.R. Carvalho, “Fractional complex-order model for HIV infection with drug resistance during therapy”, Journal of Vibration and Control 22(9), 2222–2239 (2016), DOI: 10.1177/1077546315574964.
  • [6] C. I. Muresan, S. Folea, I. Birs, and C. Ionescu, “Fractional order modeling and control of a smart beam,” in 2017 IEEE Conference on Control Technology and Applications pp. 1517–1523, 2017, DOI: 10.1109/CCTA.2017.8062672.
  • [7] D.-Y. Liu, L.-K. Taous-Meriem, O. Gibaru, and W. Perruquetti, “Identification of fractional order systems using modulating functions method”, in American Control Conference (ACC), pp. 1679–1684, 2013.
  • [8] A. Khadhraoui, K. Jelassi, J.-C. Trigeassou, and P. Melchior, “Identification of fractional model by least-squares method and instrumental variable”, Journal of Computational and Nonlinear Dynamics 10(5), 2015, DOI: 10.1115/1.4029904.
  • [9] T.T. Hartley and C.F. Lorenzo, “Fractional-order system identification based on continuous order-distributions”, Signal Processing 83(11), 2287–2300 (2003).
  • [10] D. Maiti, M. Chakraborty, and A. Konar, “A novel approach for complete identification of dynamic fractional order systems using stochastic optimization algorithms and fractional calculus”, in 2008 International Conference on Electrical and Computer Engineering, pp. 867–872, 2008.
  • [11] K. Hryniów and K.A. Markowski, “Classes of digraph structures corresponding to characteristic polynomials”, in Challenges in Automation, Robotics and Measurement Techniques, Springer International Publishing, pp. 329–339, 2016, DOI: 10.1007/978-3-319-29357-8 30.
  • [12] E. Fornasini and M.E. Valcher, “Directed graphs, 2D state models, and characteristic polynomials of irreducible matrix pairs”, Linear Algebra and its Applications 263, 275–310 (1997).
  • [13] E. Fornasini and M.E. Valcher, “Controllability and reachability of 2D positive systems: a graph theoretic approach”, IEEE Transaction on Circuits and Systems I 52, 576–585 (2005).
  • [14] K.A. Markowski, “Digraphs structures corresponding to realisation of multi-order fractional electrical circuits”, in 2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), pp. 1–6, 2016, DOI: 10.1109/AQTR.2016.7501368.
  • [15] K.A. Markowski, Relations Between Digraphs Structure and Analogue Realisations with an Example of Electrical Circuit, Springer International Publishing, pp. 215–226, 2017, DOI: 10.1007/978-3-319-54042-9 20.
  • [16] K.A. Markowski, “Fractional kinetics of compartmental systems. First approach with use digraph-based method”, Proc. SPIE 10445, 10445–10445–9 (2017), DOI: 10.1117/12.2281028.
  • [17] K.A. Markowski, “Realisation of linear continuous-time fractional singular systems using digraph-based method. First approach”, Journal of Physics: Conference Series 783(1), 012052 (2017), DOI: 10.1088/1742-6596/783/1/012052.
  • [18] K.A. Markowski, “Minimal positive realizations of linear continuous-time fractional descriptor systems. two cases of input-output digraph-structure”, International Journal of Applied Mathematics and Computer Science 28(1), 2018, (in press).
  • [19] T. Kaczorek and L. Sajewski, The Realization Problem for Positive and Fractional Systems, Springer Publishing, 2014.
  • [20] W.D. Wallis, A Beginner’s Guide to Graph Theory, Biiokhauser, 2007.
  • [21] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, London: Springer-Verlag, 2009.
  • [22] R.B. Roesser, “A discrete state-space model for linear image processing”, IEEE Trans. Austom. Contr. no. AC-20, pp. 1–10 (1975).
  • [23] K. Hryniów and K.A. Markowski, “Optimisation of digraphs creation for parallel algorithm for finding a complete set of solutions of characteristic polynomial”, in 20th International Conference on Methods and Models in Automation and Robotics, pp. 1139–1144, 2015, DOI: 10.1109/MMAR.2015.7284039.
  • [24] K.A. Markowski, “Determination of minimal realisation of one-dimensional continuous-time fractional linear system”, International Journal of Dynamics and Control 5(1), 40–50 (2017), DOI: 10.1007/s40435-016-0232-3.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2329641-6e1b-4755-9d6f-230e0452aba1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.