Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Analiza elektromiograficzna mięśni kończyn górnych do automatycznej kontroli napędu wózka inwalidzkiego
Języki publikacji
Abstrakty
Equipping hand-propelled wheelchairs with supplementary power assistance systems combining the advantages of manual and electric wheelchairs. The study aims to develop innovative automatic steering strategies for assistive drive systems. Our approach involves regulating the intensity of power assistance using one upper arm's electromyography (EMG) signals, significantly simplifying the control system. However, the inherent asymmetry between the actions of the right and left upper limbs (handedness) poses a challenge. To address this, we set out to identify the upper limb muscle group exhibiting the least propelling asymmetry between the left and right sides, thereby determining the most suitable candidate for controlling the assistive drive of a wheelchair. The study used a standard manual-powered wheelchair and a single non-disabled research partici pant. Muscle activity in each upper limb during wheelchair propulsion was measured using EMG equipment. Eight muscle examinations were per formed on each upper limb: biceps brachii (A), triceps brachii (B), medial epicondyle (C), extensor carpi radialis longus (D), anterior epicondyle (E), posterior epicondyle (F), trapezius, middle region (G), and subscapularis (H). The mean maximal muscle EMG signal was analyzed based on six cycles of wheelchair propulsion. The asymmetry of EMG values for the left and right limbs can vary from 15% to 53%, depending on the muscle studied. Our findings reveal that the D muscle displays the least muscular asymmetry during wheelchair propulsion, suggesting that the tension signals of this muscle can effectively regulate the intensity of assisted wheelchair propulsion.
Wyposażenie wózków inwalidzkich z napędem ręcznym w dodatkowe napędy wspomagające łączy zalety wózków ręcznych i elektrycz nych. Wymaga to jednak opracowania nowatorskich strategii automatycznego sterowania dla takich systemów napędu wspomagającego. Nasze podejście polega na regulowaniu intensywności wspomagania za pomocą sygnałów elektromiograficznych (EMG) jednego kończyny górnej, co znacznie upraszcza system sterowania. Wyzwaniem jest jednak asymetria pomiędzy działaniami prawej i lewej kończyny. Aby rozwiązać ten pro blem, postanowiliśmy zidentyfikować grupę mięśni kończyny górnej wykazującą najmniejszą asymetrię napędową pomiędzy lewą i prawą stroną, określając w ten sposób najbardziej odpowiedniego kandydata do kontrolowania napędu wspomagającego wózka inwalidzkiego. Badanie obejmo wało standardowy wózek inwalidzki z napędem ręcznym i jednego pełnosprawnego uczestnika. Aktywność mięśni każdej kończyny górnej podczas poruszania się wózkiem inwalidzkim mierzono za pomocą aparatury EMG. Na każdej kończynie górnej wykonano pomiary dla ośmiu mięśni: dwu głowego ramienia (A), trójgłowego ramienia (B), nadkłykcia przyśrodkowego (C), prostownika promieniowego długiego nadgarstka (D), nadkłykcia przedniego (E), nadkłykcia tylnego (F), mięśnia czworobocznego (region środkowy) (G) i podłopatkowego (H). Analizowano średni maksymalny sygnał EMG każdego mięśnia na podstawie sześciu cykli napędu wózka inwalidzkiego. Badania wykazały, że asymetria wartości sygnału EMG dla kończyny lewej i prawej może wahać się od 15% do 53%, w zależności od badanego mięśnia. Grupy mięśni charakteryzujące się małą wartością różnicy EMG najlepiej nadają się do sterowania napędem w oparciu o sygnał EMG z pojedynczej kończyny. Mięsień D wykazywał najmniejszą asymetrię mięśniową. Wyniki te sugerują, że sygnały tego mięśnia mogą skutecznie regulować intensywność wspomaganego napędu wózka inwa lidzkiego.
Wydawca
Czasopismo
Rocznik
Tom
Strony
6--11
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology
autor
- Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology
autor
- Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology
autor
- Department of Technological Equipment, Faculty of Mechanical Engineering and Standardization, Abylkas Saginov Karaganda Technical University
autor
- Department of Technological Equipment, Faculty of Mechanical Engineering and Standardization, Abylkas Saginov Karaganda Technical University
autor
- Department of Woodworking and Fundamentals of Machine Design, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences
Bibliografia
- [1] "Wheelchair Market Size, Share & Trends Analysis Report By Product (Manual, Electric), By Category (Adult, Pediatric), By Application, By Region, And Segment Forecasts, 2023 - 2030," Grand View Research, Inc., San Francisco. USA, Market Analysis Report GVR-3-68038-682-0, 2021. Available: https://www.grandviewresearch.com/industryanalysis/ wheelchair-market
- [2] J. Gabryelski, P. Kurczewski, M. Sydor, A. Szperling, D. Torzyński, and M. Zabłocki, "Development of Transport for Disabled People on the Example of Wheelchair Propulsion with Cam-Thread Drive," Energies, vol. 14, no. 23, p. 8137, Dec. 2021, doi: 10.3390/en14238137. Available: https://www.mdpi.com/1996-1073/14/23/8137
- [3] C. L. Flemmer and R. C. Flemmer, "A review of manual wheelchairs," Disability and Rehabilitation: Assistive Technology, vol. 11, no. 3, pp. 177–187, Apr. 2016, doi: 10.3109/17483107.2015.1099747. Available: http://www.tandfonline.com/doi/full/10.3109/17483107.2015.10 99747. [Accessed: Sep. 29, 2023]
- [4] Ł. Warguła, M. Kukla, and J. Matijošius, "Mechanical transmission in wheelchairs – An overview and proposal of an innovative concept," in Polish-Slovak Conference on Machine Modelling and Simulations 2022, MMS 2022, 5–8 September 2022 Rydzyna, Poland, in AIP Conference Proceedings, vol. 2976. Denpasar, Indonesia: AIP Publishing, 2023, p. 020006. doi: 10.1063/5.0172790. Available: http://aip.scitation.org/doi/abs/10.1063/5.0172790. [Accessed: Dec. 27, 2023]
- [5] L. H. V. Van Der Woude, I. Bosmans, I. Bervoets, and H. E. J. Veeger, "Handcycling: different modes and gear ratios," Journal of Medical Engineering & Technology, vol. 24, no. 6, pp. 242–249, Jan. 2000, doi: 10.1080/030919000300037168. Available: http://www.tandfonline.com/doi/full/10.1080/030919000300037 168. [Accessed: Dec. 27, 2023]
- [6] M. Belhorma and A. S. Bouchikhi, "Multi-Objective Optimisation of the Electric Wheelchair Ride Comfort and Road Holding Based on Jourdain's Principle Model and Genetic Algorithm," Acta Mechanica et Automatica, vol. 16, no. 1, pp. 58–69, Jan. 2022, doi: 10.2478/ama-2022-0008. Available: https://www.sciendo.com/article/10.2478/ama-2022-0008. [Accessed: Feb. 10, 2024]
- [7] H. Wang et al., "Brain-Controlled Wheelchair Review: From Wet Electrode to Dry Electrode, From Single Modal to Hybrid Modal, From Synchronous to Asynchronous," IEEE Access, vol. 9, pp. 55920–55938, 2021, doi: 10.1109/ACCESS.2021.3071599. Available: https://ieeexplore.ieee.org/document/9398666/. [Accessed: Dec. 28, 2023]
- [8] K.-S. Hong and M. J. Khan, "Hybrid Brain–Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review," Front. Neurorobot., vol. 11, p. 35, Jul. 2017, doi: 10.3389/fnbot.2017.00035. Available: http://journal.frontiersin.org/article/10.3389/fnbot.2017.00035/ful l. [Accessed: Dec. 28, 2023]
- [9] M. K. Shahin, A. Tharwat, T. Gaber, and A. E. Hassanien, "A Wheelchair Control System Using Human-Machine Interaction: Single-Modal and Multimodal Approaches," Journal of Intelligent Systems, vol. 28, no. 1, pp. 115–132, Jan. 2019, doi: 10.1515/jisys-2017-0085. Available: https://www.degruyter.com/document/doi/10.1515/jisys-2017- 0085/html. [Accessed: Jan. 26, 2024]
- [10] A. Phinyomark, C. Limsakul, and P. Phukpattaranont, "A Review of Control Methods for Electric Power Wheelchairs Based on Electromyography Signals with Special Emphasis on Pattern Recognition," IETE Tech Rev, vol. 28, no. 4, p. 316, 2011, doi: 10.4103/0256-4602.83552. Available: http://tr.ietejournals.org/text.asp?2011/28/4/316/83552. [Accessed: Dec. 28, 2023]
- [11] B. Rodriguez-Tapia, I. Soto, D. M. Martinez, and N. C. Arballo, "Myoelectric Interfaces and Related Applications: Current State of EMG Signal Processing–A Systematic Review," IEEE Access, vol. 8, pp. 7792–7805, 2020, doi: 10.1109/ACCESS.2019.2963881. Available: https://ieeexplore.ieee.org/document/8949764/. [Accessed: Dec. 28, 2023]
- [12] I. Miftahussalam, E. S. Julian, K. Prawiroredjo, and E. Djuana, "Wheelchair control system with hand movement using accelerometer sensor," Microelectronic Engineering, vol. 278, p. 112018, Jun. 2023, doi: 10.1016/j.mee.2023.112018. Available: https://linkinghub.elsevier.com/retrieve/pii/S0167931723000837 . [Accessed: Jan. 26, 2024]
- [13] Ł. Warguła and A. Marciniak, "The Symmetry of the Muscle Tension Signal in the Upper Limbs When Propelling a Wheelchair and Innovative Control Systems for Propulsion System Gear Ratio or Propulsion Torque: A Pilot Study," Symmetry, vol. 14, no. 5, p. 1002, May 2022, doi: 10.3390/sym14051002. Available: https://www.mdpi.com/2073- 8994/14/5/1002. [Accessed: Dec. 28, 2023]
- [14] E. T. Hsiao-Wecksler, J. D. Polk, K. S. Rosengren, J. J. Sosnoff, and S. Hong, "A Review of New Analytic Techniques for Quantifying Symmetry in Locomotion," Symmetry, vol. 2, no. 2, pp. 1135–1155, Jun. 2010, doi: 10.3390/sym2021135. Available: http://www.mdpi.com/2073-8994/2/2/1135. [Accessed: Dec. 28, 2023]
- [15] B. Wieczorek, M. Kukla, and Ł. Warguła, "The Symmetric Nature of the Position Distribution of the Human Body Center of Gravity during Propelling Manual Wheelchairs with Innovative Propulsion Systems," Symmetry, vol. 13, no. 1, p. 154, Jan. 2021, doi: 10.3390/sym13010154. Available: https://www.mdpi.com/2073-8994/13/1/154. [Accessed: Oct. 16, 2021]
- [16] B. Wieczorek, "The Wheelchair Propulsion Wheel Rotation Angle Function Symmetry in the Propelling Phase: Motion Capture Research and a Mathematical Model," Symmetry, vol. 14, no. 3, p. 576, Mar. 2022, doi: 10.3390/sym14030576. Available: https://www.mdpi.com/2073-8994/14/3/576. [Accessed: Aug. 31, 2023]
- [17] K. Mahajan, R. Shriram, N. Daimiwal, and S. Gandhi, "Power Spectral Density Analysis of Decomposed EMG Signals for Dominant and Non-dominant Hands," in 2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), Bengaluru, India: IEEE, Jan. 2023, pp. 452–456. doi: 10.1109/IITCEE57236.2023.10091030. Available: https://ieeexplore.ieee.org/document/10091030/. [Accessed: Mar. 22, 2024]
- [18] "TeleMyo Mini DTS System Sensor and Receiver User Manual," Noraxon Inc., Scottsdale, USA, User Manual P-5858 Rev F, Dec. 2017. Available: https://www.noraxon.com/noraxon-download/mini-dts-manual/
- [19] R. J. Vegter, C. J. Lamoth, S. De Groot, D. H. Veeger, and L. H. Van Der Woude, "Variability in bimanual wheelchair propulsion: consistency of two instrumented wheels during handrim wheelchair propulsion on a motor driven treadmill," J NeuroEngineering Rehabil, vol. 10, no. 1, p. 9, 2013, doi: 10.1186/1743-0003-10-9. Available: http://jneuroengrehab.biomedcentral.com/articles/10.1186/1743 -0003-10-9. [Accessed: Dec. 29, 2023]
- [20] B. S. Mason, R. J. K. Vegter, T. A. W. Paulson, D. Morrissey, J. W. Van Der Scheer, and V. L. Goosey-Tolfrey, "Bilateral scapular kinematics, asymmetries and shoulder pain in wheelchair athletes," Gait & Posture, vol. 65, pp. 151–156, Sep. 2018, doi: 10.1016/j.gaitpost.2018.07.170. Available: https://linkinghub.elsevier.com/retrieve/pii/S0966636218301991 . [Accessed: Dec. 29, 2023]
- [21] M. Kukla and W. Maliga, "Symmetry Analysis of Manual Wheelchair Propulsion Using Motion Capture Techniques," Symmetry, vol. 14, no. 6, p. 1164, Jun. 2022, doi: 10.3390/sym14061164. Available: https://www.mdpi.com/2073- 8994/14/6/1164. [Accessed: Dec. 29, 2023]
- [22] S. L. Soltau, J. S. Slowik, P. S. Requejo, S. J. Mulroy, and R. R. Neptune, "An Investigation of Bilateral Symmetry During Manual Wheelchair Propulsion," Front. Bioeng. Biotechnol., vol. 3, Jun. 2015, doi: 10.3389/fbioe.2015.00086. Available: http://journal.frontiersin.org/Article/10.3389/fbioe.2015.00086/a bstract. [Accessed: Dec. 29, 2023]
- [23] S. Bakatchina, T. Weissland, M. Astier, D. Pradon, and A. Faupin, "Performance, asymmetry and biomechanical parameters in wheelchair rugby players," Sports Biomechanics, pp. 1–14, Apr. 2021, doi: 10.1080/14763141.2021.1898670. Available: https://www.tandfonline.com/doi/full/10.1080/14763141.2021.1 898670. [Accessed: Mar. 22, 2024]
- [24] B. Wieczorek, Ł. Warguła, and A. Marciniak, “Sposób i system sterowania wózkiem inwalidzkim za pomocą potencjałów bioelektrycznych mięśni / System and method of supporting the control of a hybrid wheelchair with the use of bioelectric potentials of muscles,” PL440187A1, Jul. 24, 2023 Available: https://ewyszukiwarka.pue.uprp.gov.pl/search/pwpdetails/ P.440187
- [25] D. Gagnon, A.-C. Babineau, A. Champagne, G. Desroches, and R. Aissaoui, "Trunk and shoulder kinematic and kinetic and electromyographic adaptations to slope increase during motorized treadmill propulsion among manual wheelchair users with a spinal cord injury," Biomed Res Int, vol. 2015, p. 636319, 2015, doi: 10.1155/2015/636319
- [26] C. S. Holloway, A. Symonds, T. Suzuki, A. Gall, P. Smitham, and S. Taylor, "Linking wheelchair kinetics to glenohumeral joint demand during everyday accessibility activities," in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan: IEEE, Aug. 2015, pp. 2478–2481. doi: 10.1109/EMBC.2015.7318896. Available: http://ieeexplore.ieee.org/document/7318896/. [Accessed: Dec. 28, 2023]
- [27] C. S. Kim, D. Lee, S. Kwon, and M. K. Chung, "Effects of ramp slope, ramp height and users' pushing force on performance, muscular activity and subjective ratings during wheelchair driving on a ramp," International Journal of Industrial Ergonomics, vol. 44, no. 5, pp. 636–646, Sep. 2014, doi: 10.1016/j.ergon.2014.07.001. Available: https://linkinghub.elsevier.com/retrieve/pii/S016981411400105 X. [Accessed: Dec. 28, 2023]
- [28] C. E. Levy, J. W. Chow, M. D. Tillman, C. Hanson, T. Donohue, and W. C. Mann, "Variable-ratio pushrim-activated power-assist wheelchair eases wheeling over a variety of terrains for elders," Arch Phys Med Rehabil, vol. 85, no. 1, pp. 104–112, Jan. 2004, doi: 10.1016/s0003-9993(03)00426-x
- [29] L. Qi, J. Wakeling, S. Grange, and M. Ferguson-Pell, "Coordination patterns of shoulder muscles during level-ground and incline wheelchair propulsion," J Rehabil Res Dev, vol. 50, no. 5, pp. 651–662, 2013, doi: 10.1682/jrrd.2012.06.0109
- [30] I. M. Russell, E. V. Wagner, P. S. Requejo, S. Mulroy, H. Flashner, and J. L. McNitt-Gray, "Characterization of the shoulder net joint moment during manual wheelchair propulsion using four functional axes," J Electromyogr Kinesiol, vol. 62, p. 102340, Feb. 2022, doi: 10.1016/j.jelekin.2019.07.010
- [31] B. A. Slavens, O. Jahanian, A. J. Schnorenberg, and E. T. Hsiao-Wecksler, "A comparison of glenohumeral joint kinematics and muscle activation during standard and geared manual wheelchair mobility," Med Eng Phys, vol. 70, pp. 1–8, Aug. 2019, doi: 10.1016/j.medengphy.2019.06.018
- [32] A. Symonds, C. Holloway, T. Suzuki, P. Smitham, A. Gall, and S. J. Taylor, "Identifying key experience-related differences in over-ground manual wheelchair propulsion biomechanics," J Rehabil Assist Technol Eng, vol. 3, p. 2055668316678362, 2016, doi: 10.1177/2055668316678362
- [33] B. Wieczorek, M. Kukla, D. Rybarczyk, and Ł. Warguła, "Evaluation of the Biomechanical Parameters of Human- Wheelchair Systems during Ramp Climbing with the Use of a Manual Wheelchair with Anti-Rollback Devices," Appl. Sci., vol. 10, no. 23, p. 8757, Dec. 2020, doi: 10.3390/app10238757. Available: https://www.mdpi.com/2076-3417/10/23/8757. [Accessed: Jun. 13, 2021]
- [34] J. W. Chow, T. A. Millikan, L. G. Carlton, W. Chae, Y. Lim, and M. I. Morse, "Kinematic and electromyographic analysis of wheelchair propulsion on ramps of different slopes for young men with paraplegia," Arch Phys Med Rehabil, vol. 90, no. 2, pp. 271–278, Feb. 2009, doi: 10.1016/j.apmr.2008.07.019
- [35] P. S. Requejo et al., "Shoulder muscular demand during leveractivated vs pushrim wheelchair propulsion in persons with spinal cord injury," J Spinal Cord Med, vol. 31, no. 5, pp. 568– 577, 2008, doi: 10.1080/10790268.2008.11754604
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b231b91b-1923-4779-8ea0-fb5125069c79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.