PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microthermomechanical infrared sensors

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present a state-of-the-art overview of microthermomechanical infrared sensor technology. The working principle of this sensor is based on a bi-material actuated micromechanical deflection, generated by an induced temperature rise due to incident infrared radiation absorption. In order to generate a thermal image the thermomechanical deflections of the freestanding microstructures are read by either capacitive, piezoresistive or optical means. Research and development activities in this field began in the early 1990s. The development of this technology within the last 20 years has resulted in innovations such as uncooled multiband infrared detection, high-speed infrared sensing and uncooled THz imaging. This paper outlines representative milestones of this technology and analyses important results of notable groups. Significant activities on capacitive and optical readout techniques of thermomechanical infrared arrays are presented. Furthermore the advantages of microthermomechanical infrared sensors over current well-established uncooled infrared technologies are summarized. In conclusion the latest developments of this technology offer a highly potential solution for a variety of important energy-saving, safety and security applications.
Twórcy
  • Dept. of Microelectronic and Nanoelectronic Systems, Ilmenau University of Technology, PO−BOX 100565, 98684 Ilmenau, Germany
  • Dept. of Microelectronic and Nanoelectronic Systems, Ilmenau University of Technology, PO−BOX 100565, 98684 Ilmenau, Germany
Bibliografia
  • 1. A. Rogalski, “History of infrared detectors”, Opto−Electron. Rev. 20, 279–308 (2012).
  • 2. M. Erdmann, L. Zhang, S. Radhakrishnan, S. Wu, T. Goyette, and A. Gatesman “Uncooled photomechanical terahertz imagers”, Proc. SPIE 8363, 83630C (2012).
  • 3. R. Ciupa and A. Rogalski, “Performance limitations of photon and thermal detectors“, Opto−Electron. Rev. 5, 257–266 (1997).
  • 4. E. Mounier, “Technical and market trends for microbolometers for thermography and night vision“, Proc. SPIE 8012, 80121U (2011).
  • 5. http://www.flir.com/cs/emea/en/view/?id=41392.
  • 6. J. Matovic and Z. Jaksic, “Bimaterial actuators and sensor with built−in compensation of the ambient temperature interference”, Proc. Conf. Multimaterial Micro Manufacture 3, 1–4 (2007).
  • 7. S. Timoshenko, “Analysis of bi-metal thermostats”. J. Opt. Soc. Am. 11, 233–255 (1925).
  • 8. J.L. Halsor, “Radiation detective device”, US Patent No. 3,896,309 (1975).
  • 9. W. Riethmüller and W. Benecke. “Thermally excited silicon microactuators”. IEEE T. Electron Devices 35, 758–763 (1988).
  • 10. D. Sarid, Scanning Force Microscopy, Oxford University Press, New York, 1983 (1991).
  • 11. T. Thundat, S.L. Sharp, W.G. Fisher, R.J. Warmack, and E.A. Wachter, “Micromechanical radiation dosimeter”, Appl. Phys. Lett. 66, 1563–1565 (1995).
  • 12. T. Thundat, R.J. Warmack, G.Y. Chen, D.P. Allison. “Thermal and ambient−induced deflections of scanning force microscope cantilevers”, Appl. Phys. Lett. 64, 2894–2896 (1994).
  • 13. J.R. Barnes, R.J. Stephenson, C.N. Woodburn, S.J. O'Shea, M.E. Welland, T.Rayment, J.K. Gimzevski, and Ch. Gerber, “A femtojoule colorimeter using micromechanical sensors”, Rev. Sci. Instrum. 65, 3793–3798 (1994).
  • 14. J.K. Gimzewski, Ch. Gerber, E. Meyer, and R.R. Schlittler, “Observation of a chemical reaction using a micromechanical sensor”, Chem. Phys. Lett. 217, 589–594 (1994).
  • 15. J.R. Barnes, R.J. Stephenson, M.E. Welland, Ch. Gerber, and J.K. Gimezewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device”, Lett. To Nature 372, 79–81 (1994).
  • 16. E. Meyer, J.K. Gimzewski, Ch. Gerber, and R.R. Schlittler. “Micromechanical calorimeter with Picojoule−Sensitivity”, in J.K. Gimzewski and M.E. Welland, Ultimate Limits of Fabrication and Measurement, Kluwer Academic Publishers, 89–95 1995.
  • 17. P.G. Datskos, P.I. Oden, T. Thundat, E.A. Wachter, R.J. Warmack, and S.R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers”, Appl. Phys. Lett. 69, 2986–2988 (1996).
  • 18. P.I. Oden, P.G. Datskos, T. Thundat, and R.J. Warmack, “Uncooled thermal imaging using a piezoresistive microcantilever”, Appl. Phys. Lett. 69, 3277–3279 (1996).
  • 19. E.A. Wachter, T. Thundat, P.I. Oden, R. J. Warmack, P.G. Datskos, and S.L. Sharp, “Remote optical detection using microcantilevers”, Rev. Sci. Instrum. 67, 3434–3439 (1996).
  • 20. P.I. Oden, E.A. Wachter, P.G. Datskos, T. Thundat, and R.J. Warmac, “Optical and infrared detection using microcantilevers”, Proc. SPIE 2744, 345–354 (1996).
  • 21. R. Manalis, S.C. Minne, C.F. Quate, G.G. Yaralioglu, A. Atalar, “Two− dimensional micromechanical bimorph arrays for detection of thermal radiation”, Appl. Phys. Lett. 70, 3311–3313 (1997).
  • 22. T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J.B. Varesi, and P. Norton, “Infrared vision using uncooled micro−optomechanical camera”, Appl. Phys. Lett. 74, 3567–3569 (1999).
  • 23. T. Ishizuya, J.Suzuki, K. Akagawa, and T. Kazama, “optically readable bi−material infrared detector”, Proc. SPIE 4369, 342–349 (2001).
  • 24. Z. Duan, Z. Guo, W. Wang, and D. Chen, “Uncooled optically readable bimaterial micro− cantilever infrared imaging device”, Chin. Phys. Lett. 20, 2130–2132 (2003).
  • 25. J. Zhao, “High sensitivity photomechanical MW−LWIR imaging using an uncooled MEMS microcantilever array and optical readout”, Proc. SPIE 5783, 506–513 (2005).
  • 26. D. Grbovic, N.V. Lavrik, P.G. Datskos, D. Forrai, E. Nelson, J. Devitt, and B. McIntyre. “Uncooled infrared imaging using bimaterial microcantilever arrays”, Appl. Phys. Lett. 89, 073118–1 (2006).
  • 27. S.R. Hunter, R.A. Amantea, L.A. Goodman, D.B. Kharas, S. Gershtein, J.R. Matey, S.N. Perna, Y. Yu, N. Maley, and L.K. White, “High sensitivity uncooled microcantilever infrared imaging arrays”, Proc. SPIE 5074, 469–480 (2003).
  • 28. M. Steffanson, K. Gorovoy, M. Holz, T. Ivanov, R. Kampmann, R. Kleindienst, S. Sinzinger, and I.W. Rangelow. “Low−cost uncooled infrared detector using thermo− mechanical micro−mirror array with optical readout”, Proc. IRS2, I4, 85–88 (2013).
  • 29. http://optics.org/article/17600.
  • 30. D.J. Sauer, “Infared imager using room temperature capacitance sensor”, US Patent No. 5,844,238 (1998).
  • 31. H.H. Busta, “Direct view IR MEMS structure”, US Patent No. 6,140,646 (2000).
  • 32. M.J. Lurie, “Optical detectors using nulling for high linearity and large dynamic range”, US Patent No. 6,420,706 (2002).
  • 33. D.J. Channin, “Optomechanical radiant energy detector”, US Patent No. 6,392,233 (2002).
  • 34. T.S. Villani, “Uncooled IR detector array having improved temperature stability and reduced fixed pattern noise”, US Patent No. 6,583,416 (2003).
  • 35. R. Amantea, C.M. Knoedler, F.P. Pantuso, V.K. Patel, D.J. Sauer, and J.R. Tower, “An uncooled IR imager with 5 mK NEDT”, Proc. SPIE 3061, 210–222 (1997).
  • 36. R. Amantea, L.A. Goodman, F. Pantuso, D.J. Sauer, M. Varghese, T.S. Villani, and L.K. White, “Progress towards an uncooled IR imager with 5 mK NEDT”, Proc. SPIE 3436, 647–659 (1998).
  • 37. M. Varghese, “Resistive damping of pulse−sensed capacitive position sensors”, Master’s thesis, Massachusetts Institute of Technology, 4–31 (1998).
  • 38. L.−Q. Dong, X.−H. Liu, Y.−J. Zhao, and X.−X. Zhou. “The development status of the micro−cantilever array based un−cooled IR detectors”, Proc. SPIE 6621, 662129 (2008).
  • 39. G. Simelgor, “High sensitivity uncooled microcantilever infrared imaging arrays”, Optics & Opto−Electronics, Cornell Nano Scale Science & Technology Facility, 2005–2006 Research Accomplishments. CNF Project # 1202−04 (2005).
  • 40. S.R. Hunter, G.S.Maurer, G. Simelgor, S. Radhakrishnan, and J. Gray, “High sensitivity 25 μm and 50 μm pitch microcantilever IR imaging arrays” Proc. SPIE 6542, 65421F (2007).
  • 41. S.R. Hunter, G. Maurer, L. Jiang, and G. Simelgor, “High sensitivity uncooled microcantilever infrared imaging array”, Proc. SPIE 6206, 1–12 (2006).
  • 42. S.R. Hunter, G.S. Maurer, G. Simelgor, S. Radhakrishnan, J. Gray, K. Bachir, T. Pennell, M. Bauer, and U. Jagadish, “Development and optimization of microcantilever based IR imaging arrays”, Proc. SPIE 6940, 694013 (2008).
  • 43. H. Kim, Y. Park, S. Oh, S. Kim, Y. Jo, and J. Kang, “A study on MicroCantilever Deflection for the infrared image sensor using bimetal structure”, Key Eng. Materials 345–346, 785–788 (2007).
  • 44. I. Kwon, J. Kim, C. Hwang, Y. Lee, and H. Lee, “A high fill−factor uncooled infrared detector with low noise characteristics”, Proc. SPIE 6940, 694014 (2008).
  • 45. I.W. Kwon, D.S. Kim, W.Y. Kim, C.H. Hwang, and H.C. Lee, “Resonant cavity integrated absorber structure for capacitive infrared detectors”, Electron. Lett. 47, 8 (2011).
  • 46. J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Optimization and performance of high− resolution micro−optomechanical thermal sensors”, Sensor Actuator. A58, 113–119 (1997).
  • 47. Y. Zhao, M. Mao, and A. Majumdar, “Application of Fourier optics for detecting deflections of infrared−sensing cantilever arrays”, Microscale Therm. Eng. 3, 245–251 (1999).
  • 48. Y. Zhao, “Optomechanical uncooled infrared imaging system”, PhD Thesis, UC Berkeley, 1–155 (2002).
  • 49. Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitchin, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance”, J. MEMS 11, 136–146 (2002).
  • 50. Y. Zhao, J. Choi, R. Horowitz, A. Majumdar, J. Kitching, and P. Norton, “Characterization and performance of optomechanical uncooled infrared imaging system”, Proc. SPIE 4820, 164–174 (2003).
  • 51. J. Choi, J. Yamaguchi, S. Morales, R. Horowitz, Y. Zhao, and A. Majumdar, “Design and control of a thermal stabilizing system for a MEMS opto−mechanical uncooled infrared imaging camera”, Sensors Actuator. A104, 132–142 (2003).
  • 52. A. Majumdar, ”Apparatus and method for visually identifying micro−forces with a palette of cantilever array blocks”, US Patent No. 7,105,358 (2006).
  • 53. S.−H. Lim, J. Choi, R. Horowitz, and A. Majumdar, “Design and fabrication of a novel bimorph micro−opto−mechanical sensor”, J. MEMS 14, 1–7 (2005).
  • 54. T. Ishizuya, N. Amemiya, and K. Akagawa, “Optically readable radiation− displacement−conversion devices and methods, and image−rendering apparatus and methods employing same”, US Patent No. 6,080,988 (2000).
  • 55. T. Ishizuya, J.Suzuki, K. Akagawa, and T. Kazama. “Optically readable bi−material infrared detector”, Proc. SPIE 4369, 342–349 (2001).
  • 56. T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama. “160×120 pixels optically readable bimaterial infrared detector”, Proc. 15th IEEE Conf. on MEMS, 578–581 (2002).
  • 57. J.L. Corbeil, N.V. Lavrik, and S. Rajic, and P.G. Datskos. ‘‘Self−levelling uncooled microcantilever thermal detector”, Appl. Phys. Lett. 81, 1306–1308 2002.
  • 58. P.G. Datskos, S. Rajic, and I. Datskou. “Photoinduced and thermal stress in silicon microcantilevers”, Appl. Phys. Lett. 73, 2319–2321 (1998).
  • 59. B.M. Evans, D.W. Schonberger, and P.G. Datskos, “Finite element modelling of micromachined MEMS photon devices”, Proc. SPIE 3878, 253–260 (1999).
  • 60. P.G. Datskos, S. Rajic, and I. Datskou, “Detection of infrared photons using the electronic stress in metal−semiconductor cantilever interfaces”, Ultramicroscopy 82, 49–56, (2000).
  • 61. P.G. Datskos, “Micromechanical uncooled photon detectors“, Proc. SPIE 3948, 80–93 (2000).
  • 62. P.G. Datskos, “Uncooled infrared photon detector and multicolour infrared detection using microoptomechanical sensors“, US Patent No. 5,977,544 (1999).
  • 63. P.G. Datskos, “Method using photo−induced and thermal bending of MEMS sensor”, US Patent No. 6,312,959 (2001).
  • 64. P.G. Datskos, “Apparatus and method for detecting electromagnetic radiation using electron photoemission in a micromechanical system”, US Patent No. 6,444,972 (2002).
  • 65. P. G. Datskos, S. Rajic, L. R. Senesac, D. D. Earl, B. M. Evans, J. L. Corbeil, I. Datskou. “Optical readout of uncooled thermal detectors.” Proc. SPIE 4130, 185–197 (2000).
  • 66. B.M. Evans, P.G. Datskos, S. Rajic, and I. Datskou. “Optimization of micromachined photon devices”, Proc. SPIE 3778, 62–70 (1999).
  • 67. M. Martin, “Microscopic thermal detector optimization through material and geometric selection.” Master’s Thesis, Tennessee Technological University 1–67 (2000).
  • 68. P.G. Datskos, S. Rajic, L.R. Senesac, and I. Datskou, “Fabrication of quantum well microcantilever photon detectors”, Ultramicroscopy 86, 191–206 (2001).
  • 69. L.R. Senesac, J.L. Corbeil, S. Rajic, N.V. Lavrik, and P.G. Datskos. “IR imaging using uncooled microcantilever detectors.” Ultramicroscopy 97, 451–458 (2003).
  • 70. P.G. Datskos and N.V. Lavrik, “Detectors of merit”, in Encyclopedia of Optical Engineering, edited by R.G. Driggers, pp. 349–357, Marcel Dekker, New York, 2003.
  • 71. P.G. Datskos, N.V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors”, Rev. Sci. Instrum. 75, 1134–1148 (2004).
  • 72. P.G. Datskos, S. Rajic, and N.V. Lavrik, “Performance of uncooled microcantilever thermal detectors”, Proc. SPIE 5721, 136–150 (2005).
  • 73. J. Matovic, J. Lamovec, and Z. Djinovic, “Bimaterial infrared detector with efficient suppression of interference from ambient temperature”, Proc. 24th Int. Conf. Microelectr. 349–352 (2004).
  • 74. J. Matovic, ”A simplified method for analysis of mems bimaterial cantilever elements”, Proc. 25th Int. Conf. Microelectr. 1–3 (2006).
  • 75. J. Matovic and Z. Jaksic, “Micromechanical sensors based on lateral and longitudinal displacement of a cantilever sensing element: A comparative performance study”, Proc. SPIE 7362, 73621E (2009).
  • 76. J. Matovic and Z. Jaksic, “A comparative analyze of fundamental noise in cantilever sensors based on lateral and longitudinal displacement: case of thermal infrared detectors”, Microsys. Technol. 16, 755–763 (2010).
  • 77. Z. Djuric, D. Randjelovic, I. Jokic, J. Matovic, and J. Lamovec, “A new approach to IR bimaterial detectors theory”, Infrared Phys. Techn. 50, 51–57 (2007).
  • 78. D. Grbovic, N.V. Lavrik, P.G. Datskos, D. Forrai, E. Nelson, J. Devitt, and B. McIntyre, “Uncooled infrared imaging using bimaterial microcantilever arrays”, Appl. Phys. Lett. 89, 073118 (2006).
  • 79. N.V. Lavrik, D. Grbovic, S. Rajic, P.G. Datskos, D. Forrai, E. Nelson, J. Devitt, and B. McIntyre, “Uncooled infrared imaging using bimaterial microcantilever arrays”, Proc. SPIE 6206, 62061K (2006).
  • 80. N.V. Lavrik, R. Archibald, D. Grbovic, S. Rajic, and P.G. Datskos, “Uncooled MEMS IR imagers with optical readout and image processing”, Proc. SPIE 6542, 65421E (2007).
  • 81. E. Montagner, “Optical readout system for bi−material terahertz sensors”, Master’s Thesis, Naval Postgraduate School 1–60 (2011).
  • 82. D. Grbovic, N.V. Lavrik, S. Rajic, and P.G. Datskos, “Arrays of SiO2 substrate−free micromechanical uncooled infrared and terahertz detectors”, J. Appl. Phys. 104, 054508 (2008).
  • 83. D. Grbovic, S. Rajic, N.V. Lavrik, and P.G. Datskos, “Progress with MEMS Based UGS (IR/THz)”, Proc. SPIE 6963, 696317 (2008).
  • 84. D. Grbovic, “Imaging by detection of infrared photons using arrays of uncooled micromechanical detectors”, Dissertation, Univ. of Tennessee Knoxville 1–129 (2008).
  • 85. D. Grbovic and G. Karunasiri, “Fabrication of Bi−material MEMS detector arrays for THz imaging”, Proc. SPIE 7311, 731108 (2009).
  • 86. C. Bolakis, “High terahertz absorbing nanoscale metal films for fabrication of micromechanical bi−material THZ sensors”, Master’s Thesis, Naval Postgraduate School 1–55 (2010).
  • 87. P. Liao, “Design and simulation of a terahertz sensor using finite element modelling”, Master’s Thesis, Naval Postgraduate School 1–67 (2009).
  • 88. F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri. “High sensitivity metamaterial based bi−material terahertz sensor”, Proc. SPIE 8624, 862411 (2013).
  • 89. P.G. Datskos, N.V. Lavrik, S.R. Hunter, S. Rajic, and D. Grbovic, “Infrared imaging using arrays of SiO2 micromechanical detectors”, Optics Lett. 37, 3966–3968 (2012).
  • 90. D. Grbovic, N.V. Lavrik, S. Rajic, S.R. Hunter, and P.G. Datskos, “Nano−mechanical infrared detectors”, Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers (in press).
  • 91. J. Zhao, “High sensitivity photomechanical MW−LWIR Imaging using an uncooled MEMS microcantilever array and optical readout” Proc. SPIE 5783, 506–513 (2005).
  • 92. J. Salerno, “High frame rate imaging using uncooled optical readout photomechanical IR sensor”, Proc. SPIE 6542, 654245 (2007).
  • 93. G. Simelgor, “Microcantilever infrared sensor array”, US Patent No. 7,741,603 (2010).
  • 94. G. Simelgor, “Tuneable microcantilever infrared sensor”, US Patent No. 7,755,049 (2010).
  • 95. M. Erdtmann, “Micromechanical device For IR Sensing”, US Patent No. 7,825,381 (2010).
  • 96. M. Erdtmann, “Noise reduction method for imaging device”, US Patent No. 7,652,250 (2010).
  • 97. G. Jin, “Radiation Detector with Extended Dynamic Range”, US Patent No. 7,705,309 (2010).
  • 98. J. Zhao, “Thermal displacement−based radiation detector of high sensitivity”, US Patent No. 7,705,307 (2010).
  • 99. M. Erdtmann, L. Zhang, and G.I Jin, “Uncooled dual−band MWIR/LWIR optical readout imager”, Proc. SPIE 6940, 694034 (2008).
  • 100. M. Erdtmann, L. Zhang, G. Jin, S. Radhakrishnan, G. Simelgor, and J. Salerno, “Optical readout photomechanical imager: from design to implementation”, Proc. SPIE 7298, 729818 (2009).
  • 101. S.R. Hunter, “Apparatus Comprising a thermal bimorph with enhanced sensitivity”, US Patent Application No. 20070241635A1 (2007).
  • 102. M. Erdtmann, G. Simelgor, S. Radhakrishnan, L. Zhang, Y. Liu, P. Y. Emelie, and J. Salerno, “Photomechanical imager FPA design for manufacturability”, Proc. SPIE 7660, 766037 (2010).
  • 103. L. Zhang, F.P. Pantuso, G. Jin, A. Mazurenko, M. Erdtmann, S. Radhakrishnan, and J. Salerno, “High−speed uncooled MWIR hostile fire indication sensor”, Proc. SPIE 8012, 801219 (2011).
  • 104. L. Zhang, M. Erdtmann, S. Radhakrishnan, N. Xue, J. Salerno, S. Yngvesson, A. Gullapali, K. Fu, P. Siqueira, “Realtime terahertz imaging for laser beam profiling and medical imaging”, Proc. SPIE 8716, 8716–29 (2013).
  • 105. http://www.readbag.com/agiltron−pdfs−thz−imager−specs.
  • 106. Q. Tong, L. Dong, Y. Zhao, C. Gong, X. Liu, X. Yu, L. Yang, and W. Liu, “Image processing system design for micro−cantilever−based optical readout infrared arrays”, Proc. SPIE 8562, 85621N (2003).
  • 107. C. Gong, Y. Zhao, L. Dong, M. Hui, X. Yu, and X. Liu. “Short−wave infrared, medium−wave infrared, and long−wave infrared imaging study for optical readout microcantilever array infrared sensing system”. Opt. Eng. 52, 026403 (2013).
  • 108. C. Li, B. Jiao, S. Shi, D. Chen, T. Ye, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, “A novel uncooled substrate−free optical−readable infrared detector: design, fabrication and performance”, Meas. Sci. Technol. 17, 1981–1986 (2006).
  • 109. X. Wang, S. Ma, X. Yu, M. Liu, X. Liu, and Y. Zhao, “IR imaging using a cantilever−based focal plane array fabricated by deep reactive ion etching technique” Appl. Phys. Lett. 91, 054109 (2007).
  • 110. Z. Xiong, Q. Zhang, J. Gao, X. Wu, D. Chen, and B. Jiao “The pressure−dependent performance of a substrate−free focal plane array in an uncooled infrared imaging system”, J. Appl. Phys. 102, 113524 (2007).
  • 111. T. Cheng, Q. Zhang, B. Jiao, D. Chen, and X. Wu, “Optical readout sensitivity of deformed microreflector for uncooled infrared detector: theoretical model and experimental validation”, J. Opt. Soc. Am. A26, 2353–2361 (2009).
  • 112. T. Cheng, Q.Zhang, X.Wu, D. Chen, and B. Jiao, “Uncooled infrared imaging using a substrate−free focal−plane array”, Electron Dev. Lett. 29, 1218–1221 (2008).
  • 113. G. Duan, B. Su, Y. Zhao, X. Wang, H. Sun, C. Zhang, W. Zhao, “Research on bi−material MEMS detector arrays for THz imaging”. Proc. SPIE 8195, 819511 (2012).
  • 114. Q. Tong, L. Dong, Y. Zhao, C. Gong, X. Liu, X. Yu, L. Yang, and W. Liu, “Image processing system design for microcantilever−based optical readout infrared arrays”, Proc. SPIE 8562, 85621N (2012).
  • 115. S. Huang and X. Zhang, “Extension of the Stoney formula for film–substrate systems with gradient stress for MEMS applications”, J. Micromech. Microeng. 16, 382–389 (2006).
  • 116. S. Huang and X. Zhang, “Study of gradient stress in bimaterial cantilever structures for infrared applications”, J. Micromech. Microeng. 17, 1211–1219 (2007).
  • 117. S. Huang, H. Tao, I. Lin, and X. Zhang, “Development of double−cantilever infrared detectors: Fabrication, curvature control and demonstration of thermal detection”, Sensors and Actuators A145–146, 231–240 (2008).
  • 118. I. Lin, Y. Zhang, and X. Zhang, “The deformation of microcantilever−based infrared detectors during thermal cycling”, J. Micromech. Microeng. 18, 075012 (2008).
  • 119. I. Lin, X. Zhang, Y. Zhang, “Thermomechanical behaviour and microstructural evolution of SiNx/Al bimaterial microcantilevers”, J. Micromech. Microeng. 19, 085010 (2009).
  • 120. H. Torun and H. Urey, “Uncooled thermo−mechanical detector array with optical readout”, Proc. SPIE 5957, 59570O,(2005).
  • 121. M. Toy, O. Ferhanoglu, H. Torun, and H. Urey, “Uncooled infrared thermo−mechanical detector array: Design, fabrication and testing”, Sensor Actuat. A156, 88–94 (2009).
  • 122. O. Ferhanoglu, M. Toy, and H. Urey, “Parylene−based uncooled thermomechanical array”, Proc. SPIE 7298, 72980H (2009).
  • 123. K. Ivanova, Tzv. Ivanov, I. W. Rangelow, “Micromachined Arch−type cantilever as high sensitivity uncooled infrared detector”, J. Vac. Sci. Technol. 23, 3153−3157 (2005).
  • 124. I. Rangelow, T. Ivanov, and K. Ivanova, “Microsystem component with a device deformable under the effect of temperature changes”, US Patent No. 8,128,282 (2012).
  • 125. M. Steffanson, K. Gorovoy, V. Ramkiattisak, T. Ivanov, J. Krol, H. Hartmann, and I.W. Rangelow, “ARCH−type micro−cantilever FPA for uncooled IR detection”, Microelectr. Eng. 98, 614–618 (2012).
  • 126. M. Steffanson, T. Ivanov, and I.W. Rangelow, “Methodology for micro−fabricating free standing micro− mechanical structures for infrared detection”, Proc. IRS2, 105–109 (2013).
  • 127. U. Mizrahi, N. Argaman, S. Elkind, A. Giladi, Y. Hirsh, M. Labilov, I. Pivnik, N. Shiloah, M. Singer, A. Tuito, M. Ben−Ezra, and I. Shtrichman, “Large−format 17 μm high−end VOx μ−bolometer infrared detector”, Proc. SPIE 8704, 87041H (2013).
  • 128. T. Endoh, S. Tohyama, T.Yamazaki, Y.Tanaka, K.Okuyama, S. Kurashina, M. Miyoshi, K.Katoh, T. Yamamoto, Y. Okuda, T. Sasaki, H. Ishizaki, T. Nakajima, K. Shinoda, and T.Tsuchiya, “Uncooled infrared detector with 12 μm pixel pitch video graphics array”, Proc. SPIE 8704, 87041G (2013).
  • 129. D. Lohrmann, R. Littleton, C. Reese, D. Murphy, J. and Vizgaitis, “Uncooled long−wave infrared small pixel focal plane array and system challenges”, Opt. Eng. 52, 061305 (2013).
  • 130. T. Lee and J. Shie, “Feasibility study on low−resolution uncooled thermal imagers for home−security applications”, Opt. Eng. 39, 1431–1440 (2000).
  • 131. http://www.ulis−ir.com/index.php?infrared−detector=Micro80P−new.
  • 132. http://www.sensorsportal.com/DOWNLOADS/Uncooled_Infrared_Cameras_and_Detectors_Report_sample.pdf.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2318b7d-d922-4cc7-a9f7-fe0c07d4a8d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.