100 SIECZKOWSKI and SONDEJ: REAL-TIME DATA ACQUISITION BASED ON COMMON USE INTERFACES AT MATLAB ...

Real-time Data Acquisition Based on Common Use
Interfaces at Matlab and Embedded System

Krzysztof Sieczkowski, and Tadeusz Sonde;j

Abstract—The article presents the tests of method for real-
time data acquisition from embedded systems using Matlab
software. Data transmission is performed using several common
use interfaces: UART/USB, Ethernet, Bluetooth and WiFi. The
article includes a description of a protocol, measuring station
based on two types of embedded system, implementing the
proposed protocol, as well as a description of the algorithm of test
programs. Experimental studies were performed using a
STM32F4 microcontroller and Raspberry PI-3 single-board
computer. Executed tests related: (1) the average transmission
time, (2) the effective throughput of a full cycle of data exchange,
(3), the required working time of Matlab to handle the
transmission, and (4) the stability of the program timer used for
periodic data transmission calls. Experimental studies have
shown that it is possible efficient data exchange between the
embedded system and Matlab while maintaining the real-time
requirements.

Index Terms—data acquisition; serial
communications; data processing

real-time; Matlab;

I. INTRODUCTION

ATA acquisition is widely used in measurement systems.

Such systems read data stored in appropriate buffers, or
read data in real time. Almost every modern measuring system
consists of a sensor, analog-front-end input circuit, A/C
converter, a microprocessor and software for data processing
and visualization. We can distinguish 3 groups of measuring
systems: (1) autonomous, (2) autonomous with the possibility
of cooperation with a computer, (3) systems requiring the use
of a computer. The last of these groups is called virtual
instruments (VI). Due to the prevalence of PCs and decreasing
prices of measuring instruments, they are being used very
often. VI instruments require a computer with the appropriate
software. It can be done using dedicated solutions or popular
computer software can be used, for example Matlab or
LabView. Matlab software [1] is readily used because of the
enormous processing power and possibilities of displaying
data, creating graphical user interfaces (GUI) and because of
the support of multiple communication interfaces and
measurement cards. Matlab has a comprehensive set of tools
optimized for specific types of calculations. For example,
using the Matlab programming environment, it is possible
design fully functional digital filters. This environment
includes tools to help design these blocks for example
FDAtool. Matlab environment is also commonly used due to
the high degree of optimization, advanced numerical

K. Sieczkowski and T. Sondej are from Electronic Department,
Military ~ University of Technology, Warsaw, Poland (e-mails:
krzysztof.sieczkowski@wat.edu.pl, tadeusz.sondej@wat.edu.pl).

ISSN 2080-8755

computation, where the most commonly used calculations are
Fast Fourier Transform (FFT), Discrete Wavelet
Decomposition (DWT). Matlab is also equipped with tools
used for statistical calculations. The basic functionality of
Matlab can be expanded at any time by installing additional
software modules. In addition, you can design a controller
with an ergonomic GUI, together with the required algorithm
for data processing. The time to implement such a system is
much shorter than the design of a new original program in
another development environment.

An important factor when using Matlab software is the
data acquisition method. These data can be read from a file or
from a virtual instrument (e.g. card, USB adapter), off-line
(after recording data) or on-line (on an ongoing basis - in real
time). An example of the use of a popular measurement card
NI USB6251 is presented in [2]. The use of a serial port is
shown in [3], while article [4] shows how to use a Bluetooth
wireless interface.

Data acquisition in real-time requires special techniques
for data transmission. One of the important tasks is to provide
data synchronization, especially in the case of simultaneous
acquisition of data from multiple devices. An example of a
distributed measurement system with GPRS is presented in
[5]. However, in the case of such a system, delay in data
transmission is very high and can amount to tens of seconds.
Solutions based on local microprocessor systems with
dedicated measurement cards are also used. An example with
the use of the free Linux operating system is presented in [6].
Data acquisition in real-time is especially difficult in systems
with multiple wireless devices. In this case, TDMA (Time
Division Multiple Access) techniques are the most commonly
used. Examples of solutions are presented in [7] and [8].

Using Matlab software significantly accelerates and
simplifies the design of measurement systems. But this
software does not run under the control of the operating
system's real time. Therefore, to ensure data acquisition in real
time (on-line), special data exchange protocols are the most
frequently used, for example, protocols based on sending
commands and receiving responses.

This article presents a method of communication between
Matlab software and an external measuring device. The
proposed method involves the use of a wired serial interface
(e.g. serial COM - communication port) or wireless serial
interface (e.g. Bluetooth, WiFi). In addition, the article
presents the results of experimental tests of a system
consisting of Matlab software, STM32 microcontroller [9] and
various communication interfaces.

Copyright © 2016 by Department of Microelectronics & Computer Science, Lodz University of Technology

INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. 7, NO. 3,2016 101

II. CHARACTERISTICS OF COMMON USE INTERFACES

To test the proposed method of data acquisition from
external devices, three popular interfaces have been used:
COM serial port, Ethernet, Bluetooth and WiFi. Depending on
the type of interface and its method of implementation, they
offer a different throughput.

A COM serial port was initially implemented as an
RS232C interface and now it appears in the form of different
types of adapters, e.g. USB<->RS232C or USB<->UART.
However, in the operating system and in Matlab software, it is
recognised as a COM port. Solution implemented by FTDI
[10] are used very often, which offer full compatibility with
the COM interface, while providing much higher data rates
than in RS232C.

Another very frequently used solution is the SPP (Serial
Port Profile), which uses the Bluetooth wireless interface.
Bluetooth is commonly used in personal communication for
the transmission of multimedia data, but also in distributed
measurement systems. The use of Bluetooth communication
has become widespread due to the availability of multiple
integrated modules. Differences between the modules usually
come down to the implemented profiles. There are two basic
groups of Bluetooth modules: those supporting different
Bluetooth profiles and those with HCI (Host Controller
Interface) interfaces. The use of modules with HCI interface
requires the use of additional procedures that support the
Bluetooth protocol stack. On the other hand, configuring the
module as a device operating in the SPP makes it possible to
use the module as a wireless equivalent of the RS232C
interface. Usually before the first use of a Bluetooth module,
its initial configuration is required, e.g. using AT commands.

Communication via the WiFi interface (IEEE 802.11) has
found wide use in computer networks. It is the wireless
equivalent of the Ethernet interface. The WiFi standard allows
for wireless and faster transmission of data between devices
which are at a much greater distance than previously described
Bluetooth. Depending on the version, WiFi offers a variety of
data transmission rates, ranging from 11Mbps (802.11b) to
1Gbps (802.11ac). In embedded systems and off-line
measuring devices, modules dedicated to WiFi connectivity
are used most often. Such modules are available with various
implementations of protocol stacks or without the stack. Lack
of support for the stack requires the use of an additional
microprocessor. In contrast, others offer support for TCP/IP,
UDP/IP as well as network control mechanisms, e.g. ping or
traceroute. There are also modules containing optional
additional higher layer protocols. The modules supporting
specific protocols are often equipped with additional
(embedded) microcontroller, providing support for these
protocols. Modules with protocol support can be set up to
work automatically. New to the market are WiFi modules
working as a wireless RS232C or UART interface. For a WiFi
module to work as a WiFi - RS232C/UART bridge, the
network address and password to which the module will
connect must be pre-configured. In addition, it is necessary to
set the number of ports required for TCP or UDP. Modern
WiFi modules also offer the opportunity to work in 'SoftAP'

mode, allowing you to create a wireless network from the
WiFi module. In any case, the wireless transmission must take
into account the time required for connection.

III. METHOD FOR TRANSMITTING DATA
IN REAL TIME TO MATLAB SOFTWARE

A protocol with command-response architecture has been
designed for error-free data transmission. The master system
sends certain commands, which must always be answered by
the slave device. This protocol is based on a basic frame, the
structure of which is shown in Fig. 1.

Preamble | Type | Command | Data Size Data CRC
2B 1B 1B 2B 0...65535 B 2B

Part| Part Il

Fig. 1. The structure of the basic frame of the communication protocol.

The frame consists of 6 fields. The "Preamble" field
contains the constant value synchronizing the slave device.
The "Type" field determines the frame type: command,
response, error when receiving the last frame, and the
direction of transmission. The "Command" field contains the
command code. "Data Size" specifies the size of the "Data"
field. The "Data" field contains the transferred data. The field
with the "CRC" checksum allows to detect an error in the
frame structure. The protocol allows to send up to 64 kB of
data in one frame. The proposed protocol is conventionally
divided into two parts (Part I and Part II). The first part
consists of the fields: ,,Preamble”, ,,Type”, ,,Command”,
»Data Size”. The second part is: the "Date" and "CRC" fields.
This division allows to accelerate the process of handling the
frame by the receiver device, because the first part always has
a constant structure and determines the size of the rest of the
frame. The protocol has been designed to enable the detection
of data error or loss.

In this study, the transmission always takes place on a
command-response basis. The master device (computer and
Matlab software), performing calculations and fulfilling an
administrative function, sends a query to the device. A new
query is sent only if a response has been received from the
slave device, or when there was no response (timeout). To
enable efficient communication in the command-response
mode, an appropriate function that supports this type of
transmission has been designed. The algorithm of this function
is shown in Figure 2.

As an argument, the function adopts a data vector whose
structure maps the structure of the frame. When a command is
sent, a frame is transmitted containing data specifying that it is
a request to the device. After each call, the "fTransmit" flag is
checked. When the function is called at the beginning of the
command-response cycle, the checked flag has a zero value.
This allows the implementation of the first part of the cycle,
i.e. transmission. Therefore, the value of the timeout counter is
set next, the command is sent and the "fTransmit" flag is set.
Recalling the function (with the same argument as before)
makes the function check if there is already an active
transmission cycle.

102 SIECZKOWSKI and SONDEJ: REAL-TIME DATA ACQUISITION BASED ON COMMON USE INTERFACES AT MATLAB ...

Set timeout
counter
|
Send
Command

Received full
frame

Received at
least 6 Bytes

Fig. 2. Algorithm of the function sending and receiving data.

Since the last function call sets the active transmission
flag, the function performs procedures to correctly receive a
response from the device. Therefore, it checks whether the
maximum time from sending the command has been reached.
If so, it returns a value signaling a timeout. If the timeout has
not occurred, one of two conventionally accepted parts of the
frame is checked. After receiving any part, the correctness of
data is verified.

If the data in the first part or in the entire frame are invalid,
the function returns a value indicating a CRC error. Therefore,
to send a command to the slave device and receive a
confirmation, it is necessary to call the function that supports
the transmission at least 3 times. The first call is made to the
command transmission and two to the receipt of a response -
respectively to the first part of the frame (Part I - 6 bytes) and
to the second part (Part II). The function returns 0 when the
internal procedures will be performed correctly and it does not
require the activity of other procedures. The value of 1
returned by the function supporting transmission signals that
the received frame is an integral whole and can be passed to
the function that supports a higher layer of the protocol.

In order to achieve the optimum time occupied by data
transmission (maintaining the required throughput) in any data
acquisition and processing system, it is necessary to correctly
select the frequency of sending commands (and verification
whether a set of data has already been received) to the slave
device. In addition, it is necessary to select the proper size of a
data packet that will be sent as a reply in one transmission.

IV. ORGANIZATION OF THE MEASURING SYSTEM
A. Hardware and software setup

To test the operation of the interfaces mentioned in
Matlab, system has been compiled according to the following
topology. The role of the master device is played by a

computer running 64-bit Windows 7 operating system with
Intel Core 17-3770K, 3.50 GHz and 16 GB of RAM. The
computer has a SSD with 128 GB.

In order to further testing of test, two external
measurement systems have been made. The first external
measurement system was constructed based on the STM32F4
discovery kit (32-bit microcontroller with Cortex-M4 -
STM32F407 core, 168 MHz clock). The assembled system is
shown in Fig. 3.

MASTER | SLAVE
|
2 . PC
~{usB<->uARTH————
| JdL
Desktop | \ ~ UARTS
computer, | " P) [BT | | BT —----—g| STM32F4
Matlab (PC) | (1) e Cortex-Ml'l
Software @168MHz
Windows 7] % "wiri e Ki
¢) |_(PC) (l)': (1C)

Fig. 3. Block diagram of the first measurement system.

The master side, for the first system used in the study
features: a) USB<->UART adapter type FT232RL made by
FTDI, b) Bluetooth module, ¢) WiFi card. The FT232RL
system after installing the drivers is reported as a COM serial
port, which can work with any configured Baud Rate (BR). In
the tests, the BR is set to 1 Mb/s. Bluetooth module - BT (PC)
is a module designed by Pentagram. This module operates
using the Bluetooth 2.1 standard. It allows configuration in the
serial port profile (SPP). As the WiFi module, an external
network adapter TP-LINK TL-WN722N has been used,
allowing work in the network using the 802.11n standard.

The slave of the first measurement system with
the STM32F4 microcontroller uses two UART interfaces
(2 and 3). UART2 handles communication with the master
system using: a) USB<->UART adapter, b) Bluetooth module,
c¢) WiFi module. The second interface (UART3) was
connected permanently to the serial port terminal in a
computer. This terminal is used to display messages relating to
system operation, and to present measurement results. For
each UART interface, the BR was set to 1 Mb/s. For Bluetooth
- BT (uC) connections, the RN-41 module from Roving
Networks [11] was used. It makes it possible to work in the
SPP allowing you to create a wireless serial link. In the study,
the module was configured to operate automatically as a
master system in a private Bluetooth network. From the side
of the microcontroller, this module also worked at a speed of
1 Mbps. After the one-time configuration, software written
using Matlab was able to establish a connection with the pre-
configured RN-41 module. For connections via WiFi (nC),
AMW106 module designed by Ackman Networks [12] was
used. This system's structure features a Cortex-M3
microcontroller, in which the IP protocol stack has been
implemented. In addition, this system has been configured to
run in "Wireless Serial Port" mode, taking advantage of UDP

INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. 7, NO. 3,2016 103

datagrams. With the help of the computer WiFi network
adapter and the ACKI106 module, a wireless computer
network was launched in which role of an AccessPoint device
was played by the ACK106 module while the network card
was the client. After powering up the microprocessor system,
the computer was able to connect to the associated network
(known SSID). Previously configured UDP transmission
allows for data exchange between two devices. Radio
equipment, both Bluetooth and Wi-Fi, were located at a
distance of about 1 m from each other during testing. In
addition, each of the devices had implemented support for
hardware-based data flow control (implemented using the
RTS/CTS line in the UART interface).

Organization of the second measuring system is very
similar to the previously presented. The main difference
between the systems is occurring type of evaluation board
used in the system. In the second system uses single board
computer such as Raspberry PI-3 Model B [13]. Raspberry PI
is running Linux, the distribution Raspbian. The Raspberry PI
computer provides SoC Broadcom BCM2837 type.
The BCM2837 chip includes a 4-core, 64-bit ARM Cortex-
AS53 processor. Each of the cores work with a maximum
frequency of 1.2 GHz. The BCM2837 SoC also include GPU
unit, type VideoCore IV, offering computing power at the
level of 28.8 GFLOPS. RAM 1GB can be shared between the
CPU and GPU processors. Schematic diagram of the
assembled second measurement system shown in Fig. 4.

MASTER SLAVE

l LCD
| Monitor

) | T

Ethernet llJOMb/s— -
Desktop f | For
computer, | |
Matlab S Wi | RPI 3,
Software “ __| WiFi 4xCortex-A53
Windows 7 e) (PC) 1/‘/' @ 1,2 GHz
' =F

Fig. 4. Block diagram of the second measurement system.

At the Master side, for the second measurement system is
the same PC as the first system. It occurs also the same WiFi
(e) network card. A novelty in the second measurement
system to replace Bluetooth and USB-UART bridge through
the Ethernet hardware interface (d). Uses Ethernet adapter
type Realtek PCle GBE Family Controller 1Gbit.

At the slave side of the second measurement system used
in the factory integrated Ethernet controller and WiFi.
Raspberry PI computer contains 100Mb Ethernet controller
type, and WiFi network can operate in 802.11n standard.
Controlling the test program at the slave side, was done by
a local keyboard and monitor connected directly to the
computer Raspberry PI 3.

Testing software on the master side was designed in
Matlab software, version R2013a. Only standard tools
available in Matlab were used. The testing program was
designed in the form of a GUI window. The algorithm of the
testing program is shown in Fig. 5.

Display main window
(GUI)
v
Connect to external
measuring system
(instrument)

| Gettestsettings |

| Execute test |

| Showtest'sresult |

Fig. 5. Matlab's algorithm of the testing program.

The GUI is displayed after running the script. The user can
enter measurement parameters and selects one of the three
communication interfaces tested. Once this is done, it is
possible to run the measurement. After the end of the test, the
result is displayed in the "Command Window" field. Access to
the equipment from the Matlab environment, whether it is a
serial port, Bluetooth, or UDP datagrams in a WiFi network, is
very similar. In Matlab software, the interface through which
the program connects to an external device is called the
instrument. The method of supporting the communication
interface in each case amounts to creating an object that
represents the given instrument. All the data defining the
connection parameters are stored in this object. After the
object is created, it is possible to open the connection
(occupation of a resource by Matlab in Windows). When the
connection is established, it is possible to transfer data to/from
an external device using one of the data transmission
functions. Any communication interface can be used.

Data are sent from the master device without delay. Only a
handle for the opened and configured instrument is required.
The data received by the selected interface are stored in the
FIFO buffer of the given instrument. The number of bytes
contained in the receive buffer is stored in a variable
associated with the given communication interface. Therefore,
it is important to set the size of the receive buffer to a size that
will not allow a buffer overflow or the data must be collected
at a speed greater than the speed of sending data by an
external device.

Software for the microprocessor (first measurement
system) was written in C using the Keil MDK ARM
development environment. The main algorithm of the program
assumes independent receipt and immediate verification of
received frames. After correct decoding, the slave sends a
response to the received command. The microprocessor
system has a 32-bit counter, operating at a frequency of

104 SIECZKOWSKI and SONDEJ: REAL-TIME DATA ACQUISITION BASED ON COMMON USE INTERFACES AT MATLAB ...

1 MHz. The counter makes it possible to obtain a resolution of
1 us and to maintain a sufficiently long measurement time.
The counter is used to retrieve timestamps for the beginning
and end of "command" frames and the beginning and end of
"response” frames. Moments of retrieving timestamps are
shown in Fig. 6. Retrieved timestamps are then processed and
displayed in the computer terminal's console for further
analysis.

Master

Slave

\ &

I I

I I

I I

I Il I

I Il I

L L L L
ts5 ts6 ts7 tsn

I

I

I

I

I

L L L
tsl ts2 ts3 ts4
Fig. 6. Moments of retrieving timestamps in the slave device.

Measurements consisted of sending 1 MB of data from the
microprocessor device to a computer in packets of fixed size
for the three studied communication interfaces. This was
implemented in the following manner. In the first cycle, the
master system sends a query command to the slave system,
regarding the amount of available data. The slave device sends
the response (1 MB of data available). The next command-
response cycle comes down to sending requests for a certain
amount of data in order to receive the full set of data.

Dedicated software for Slave side, second measuring
system (Raspberry PI 3), it has been designed using the C
language and GCC compiler. In this system, is used network
connection (Ethernet and WiFi). As a lower layer protocol, it
was used connectionless UDP protocol. UDP protocol
handling was implemented in a separate thread, where after
receiving the UDP datagram was immediately sent to a
decoding procedure for an original, designed frame
transmission. Information about the current state of the system
were sent to the terminal window Linux shell.

B. Measurement tests

The four different data transmission tests were performed.
The first three tests were performed using a first measurement
system. Test no. 1 determined the transmission time of one
data packet and the effective throughput when packets of
various sizes are transmitted. Test no. 2 determined the time
required to handle the full command-response cycle and the
throughput achieved. In this test, the function transmitting data
was called with a fixed time interval. As a result, Matlab was
able to also perform other tasks than handling the
transmission. In addition, the link's effective throughput was
determined. The idea of the test boils down to finding the
optimum period for calling the function handling transmission.
This was to ensure maintaining the best throughput and the
smallest usage of Matlab for handling the transmission of
packets of varying lengths and the three interfaces tested. If
the system is designed in Matlab software, which is to be
similar to the RTOS (Real Time Operating System) system,
there may be a need to calling the function or procedure
transmitting data in a cyclic manner. Therefore, test no. 3 was
concerned with determining the stability of data calls using a

dedicated "timer" object for this purpose. This test consisted of
sending a frame (8 bytes) to the slave device in a fixed period
of time, in which the role of the clock signal is executed by the
timer object in Matlab software. The timer object was
configured to call the function sending the data packet when a
specified time interval is reached. If these packets are received
in the microprocessor system, timestamps for the beginning
and end of the packet are retrieved. These timestamps, after
the end of the test, allow to define the moment of receiving the
frame transmitted by the slave device. In each of the tests,
besides the aforementioned parameters, the correctness of data
transfer was verified.

Fourth test was performed using a second measuring
system. It is a complement of the first studies of tests focusing
on a different type of embedded system. The fourth test
consists of two types of tests. In the first type of program
Matlab only took away the data (in the same manner as in the
first study). In the second part of this test, the received amount
of data that has been subjected to processing. Each received
amount of data was subjected to Fourier processing (FFT) and
inverse Fourier Transform (IFFT). The FFT-IFFT processing
cycle was repeated 100 times for each received part of data.

Therefore, the fourth study made using the same software
as the first. For the second part of this study was added built-in
procedures FFT and IFFT. The second system is based on a
different type of processor (Broadcom BCM2837 SoC), so the
slave-side software has been adapted to a different
architecture. The principle of operation and major algorithm of
the program has not been changed.

V. TESTS RESULTS

As stated earlier, three tests were performed. In the first
test, the average transmission time of one complete cycle was
measured and determined, and the average throughput for
packets with different lengths was also determined. These tests
were performed for the three communication interfaces
analysed. Fig. 7 shows the results.

—_— Transmit Time UART
10000 | ... O Throughput UART ~ 10000
—_—— v Transmit Time BT
— - —&A-— = Throughput BT e
1000 | — —= — Transmit Time Wi-Fi o d - 1000 &'
Throughput Wi-Fi m
— X~
g =
£,100 a
2 5
£ =]
£ 10 2
£ =
2 :
S g iR
= Lo UART - USB<->UART
o BT - Bluetooth
0,1 + T T T 0,1
10 100 1000 10000

Packet size [B]

Fig. 7. Transmission time and effective throughput for one packet.
From the obtained results, it can be concluded that the

highest throughput was obtained when devices communicate
via a wired link. Throughput in case of Bluetooth transmission

INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. 7, NO. 3,2016 105

is greater than that of WiFi transmission for packets with a
size of less than 2 kB of data. Above this value, there is a large
increase in the duration of packet transmission using
Bluetooth. In the case of very large packets (50 kB), the
effective throughput for the WiFi module significantly
improved, approaching the values achieved in the case of a
wired connection. For value of approx. 5 kB, the Bluetooth
module is saturated reaching a throughput of 20 kB/s. The
transmission times achieved have averaged values, in which
the value of the standard deviation is shown in Fig. 8.

‘@
E
c
Re)
©
.; 10 -
[9)
o©
o°
o
[
2
S —e—— Std dev. UART
n o Std dev. BT
— -v — Std dev. Wi-Fi
1 T T T
10 100 1000 10000
Packet size [B]
Fig. 8. Standard deviation for packets of different lengths (first measurement
system).

The standard deviation values for wireless transmission
remain at the level of approx. 9 ms to 40 ms. In wired
transmission, this value is significantly improved (from 2 ms
to 5 ms) in the case of transmission of packets with a size of
1 kB of data or larger. A momentary increase of the standard
deviation was also observed for two types of transmission
(wired and Bluetooth) when the packet size was 500 B. This
test was performed in a situation where the function
implementing the command-response transmission was
continuously checking whether the full frame was retrieved.
Therefore, in this situation, the work of Matlab software
focused entirely on data transmission

Test no. 2 helped to determine the effective working time
of Matlab which is required to handle data transmission, but at
the same time allowing for data processing. The test method is
shown in Fig. 9.

Transmission

function Send Receive Receive
CMD Data Data
Other | Processing | | Processing |
Matlab I I I I
operation } } } } T
Il Il Il Il :
t = const t = const

Fig. 9. Test of Matlab usage required for handling data transmission.

Calling the function handling the transmission was
implemented with a fixed time interval (t = const). Values of
the measured system usage times and the achieved data transfer
throughput of the UART interface are shown in Fig. 10.

100 : 100
%w—_r;—_—_f}:m: eoe ey
- —A P~

Matlab usage - 5kB
Throughput - 5kB
Matlab usage - 10kB
Throughput - 10kB
Matlab usage - 20kB
Throughput - 20kB ~ R
Matlab usage - 50kB | RS
Throughput - 50kB

Matlab usage [%]
>
T
Throughput [kB/s]

cCeomp>400@

T T

10 100

Function calls period [ms]

Fig. 10. Usage of the Matlab system and throughput for different function call
times.

For each period of calling the function which handles
transmission, the throughput obtained increases with the size
of the packet. If the function call interval is 10 ms, the largest
increase in Matlab usage of approx. 20 % was observed for all
transmissions. From this value, system usage decreases to a
level of a few percent. In the case of other interfaces, a similar
trend was obtained in regard to the system usage. A summary
of results for packets with a size of 5 kB is shown in Table I.
The smallest system usage was obtained when devices
communicated via Bluetooth. In the case of the WiFi interface,
a slight decrease in usage of the system was observed
compared to the wired interface.

TABLE L.
USAGE OF THE MATLAB SYSTEM FOR THREE TESTED INTERFACES
(FOR PACKET SIZE 5 KB)

Call period [ms] UART BT WiFi

0 99.68 99.63 99.58

1 21.48 16.49 20.27

2 20.61 16.40 19.07

5 20.56 16.37 20.55

10 20.63 16.82 20.46

20 14.87 9.76 12.24

50 10.57 6.49 8.08

100 5.01 4.24 5.69

200 3.51 3.21 3.66

In the last test, the stability of a counter in Matlab, used as
an object triggering periodic data transmission, was
determined. Fig. 11 shows the standard deviation of the jitter
values occurring during data transmission. The results are
similar for each interface tested. It should be noted that for
short periods between sending commands (e.g. 20 ms), the
deviation is approx. 15 ms. Therefore, it is comparable with
the value of the intervals between transmission calls. As
presented earlier, the fourth study determine the transmission
time of one data packet and the effective throughput when
packets of various sizes are transmitted.

106 SIECZKOWSKI and SONDEJ: REAL-TIME DATA ACQUISITION BASED ON COMMON USE INTERFACES AT MATLAB ...

o
L

—e&—— Std dev. UART
o Std dev. BT
— -v— Std dev. Wi-Fi

Jitter standard deviation [ms]

100 1000

o

Transmission period [Ms]

Fig. 11. Standard deviation for the transmission of data with different periods
of repetition.

The Fig. 12 shows the resulting of transmission time and
effective throughput for one packet when the Matlab software,
receives only data. Software at the master-side does not
perform any data processing.

10000

10000 .

Transmit Time Ethemet

S s ey Transmit Time WiF
- .- Throughput Ethemet
1000 + Throughput WiA
z 7
= a
o 1004 =
E 5
— Y =3
E s
10 ¢ =
2 o
@

E £

01 T T T 01

10 100 1000

Packet size [B]

Fig. 12. Transmission time and effective throughput for one packet (Matlab
only received the data).

With the increase of the size of the transmitted packet,
increasing the effective data throughput. This increase is
observed until the packet size is about 20 kB of data. Both
types of transmission where the packet size is about 20 kB,
there was a slight decrease of effective throughput. For each
transmitted packet size, wired connection (Ethernet) offered a
higher effective throughput compared with wireless
connection (WiFi). The highest throughput achieved for the
wired network and was about 1570 kB/s and in the case of a
wireless connection was approximately 480 kB/s. Regardless
of the type of network connection, the maximum throughput
achieved for the largest size of the test packet. In the case of
WiFi, almost the entire range of the transmitted packet sizes,
reached similar transmission times. In most cases (packets
with sizes ranging from 10 B to 10 kB), the time was about
33 to 35 ms. Only a packet size greater than 10 kB have been
transmitted with an average time of more than 90ms. For a
wired connection, the transmission times of a single package
contained a much greater extent compared to a WiFi
connection. The smallest transmission time (less than 20 ms)
of single packet, for a wired connection obtained when the

packet size was 10 B, and size is in the range of from 200 B to
10 kB. The largest transmission time of one packet has been
achieved when the transmitted packets have a size greater than
10 kB. For a wired transmission, time of 31 ms was obtained,
but for the wireless transmission, the obtained time was about
100 ms.

In the fourth study also performed a second test to
determine the transmission time of one data packet and the
effective throughput when packets of various sizes are
transmitted but now additionally Master-side software
(Matlab) process data. Each received amount of data was 100
times processed using the FFT and IFFT algorithms. The
Fig. 13 shows the obtained result.

1000 -

8

ik

Transmit Time [ms]
Throughput [kB/s]

e

Transmit Time Ethemet
Transmit Time WiR
Throughput Ethemet
Throughput WiF

0,1 Q ; , 01
10000

Packet size [B]

Fig. 13. Transmission time and effective throughput for one packet (Matlab
received and processed the data).

Similarly to the first part of this study, there was an
increase effective throughput with increasing size of the
package. Also it observed a moment where there is a lack of
continuity growth of effective throughput. This moment
is when packet size is about 2 kB. There was also a greater
difference in throughput between a wired and wireless, for the
corresponding size of transmitted packets. In the range of 10 B
to 1 kB was observed linear transmission times of the data
packet. For a wire transmission it was about 12 ms, and for
wireless transmission it was about 48 ms. Over 1 kB packet
size, transmission time of one packet grew up to more than
337 ms for Ethernet, and 393 ms for WiFi connection.

The above times were averaged, but the standard deviation
of the interfaces used in a second type of measurement system
is shown in Fig. 14. Depending on the type of connection and
load of Master system, there was a different standard
deviations. The largest standard deviation was observed in the
case of network connection type WiFi and the Master software
handles the received measurement data. In this case, the
standard deviation over a wide area of the chart was about 28
to 37 ms. The largest spread of the standard deviation has been
observed in the case of network connection type WiFi and the
Master software does not process the data. In this case, the
standard deviation was in the range of from about 14 to more
than 30 ms. The lowest value of the standard deviation was

INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. 7, NO. 3,2016 107

observed when the network connection was Ethernet and
Master software also handles the received data. In almost the
entire range characteristic of the standard deviation does not
exceed 10 ms. In the case of network connection type
Ethernet, and the software does not process the data, we
observed the lowest standard deviation of less than 5 ms (for
packet sizes: 2 kB, 5 kB, 20 kB and 50 kB).

50 4 — Std dev. Ethernet
o e b e Std dev. WiFi
- + - Std dev. Ethemet Load | -
=it i) e Std dev. WiFi Load
2 4 , —
—
- . E\
S # A
- P il 5 3
£ . Yy \/\ /'\
k= A
o :
@
© 2 y
= 1
T
=
w0
10

10 100 1000
Packet size [B]

Fig. 14. Standard deviation for packets of different

measurement system).

lengths (second

After the completion of all four tests, no errors during data
transmission were observed.

VI. SUMMARY

The proposed method of communication makes it possible
to achieve an error-free and fast data transmission. Also, the
process of communication between two devices is monitored
on an ongoing basis. As a result, this method can be used in
data acquisition systems with transmission in real time. Data
transfer size may change dynamically depending on the
settings or load on the system that carries out some other
tasks, such as data processing. The communication method
presented in the article can be implemented with different
serial interfaces and various computer software. The article
presents test results for the UART/USB, Ethernet, Bluetooth
and WiFi interfaces and for software written in Matlab. The
tests allowed to assess the suitability of using selected
communication interfaces for two type embedded system. The
first system (1) was based on full an autonomous
microcontroller (STM32 with ARM Cortex-MF core). The
second one (2) was based on embedded system with high
performance microprocessor (Raspberry Pi 3 System-on-Chip
BCM2837 with ARM Cortex-A53 core) controlled by Linux
operating system. Also, the experimental tests allowed the
usage (measured as the duration of handling communication
procedures) of Matlab when handling this method of
communication was determined. For first (1) tested system,
during the transfer of small data packets (less than 1 kB), the
average transmission time in the command-response cycle
remains at a constant level for each of the interfaces and is the
shortest for UART (approx. 40 ms) and the longest for WiFi
(approx. 100 ms). When sending larger packets (greater than

1 kB), a larger role is played by the data transfer rate of the
selected interface. Tests of Matlab usage when handling the
proposed method of communication in the worst case amounts
to approx. 20 % for UART. However, in the case of calling a
function that handles communication every 100 ms and the
transmission of larger packets (50 kB), the usage is only 4 %.
For second embedded system (2), the highest throughput
achieved for the wired (Ethernet) network and was about
1570 kB/s and in the case of a wireless (WiFi) connection was
approximately 480 kB/s. The largest transmission time has
been achieved when the transmitted one packet have a size
greater than 10 kB, for Ethernet interfaces it is about 31 ms
and for WiFi interfaces it is about 100 ms. When Matlab also
performs data processing (each received amount of data was
100 times processed using the FFT and IFFT algorithms), the
transmission time is increased to 337 ms for Ethernet, and
393 ms for WiFi. It should be noted, that in this case, was still
retained real-time requirements.

The proposed algorithm and dedicated communication
protocol were originally designed to communicate with a
single device. (e.g. PC and external microprocessor system).
In the case of multiple data streams where each of them has a
different communication interface (BT, Wi-Fi, UART), it is
possible to create several dedicated functions that implement
the proposed algorithm. All transmitting functions must be
called in Matlab sequentially. At a given time, a single
transmission is supported.

If multiple external devices use the same communication
interface e.g. Bluetooth, then the distinction between multiple
data streams must be made using the appropriate command
(Command field) and the higher layer protocol. In this case,
all devices within the communication interface cannot transmit
data simultaneously. Communication with devices is also
sequential.

It is also possible to transmit multiple streams from one
device, where a dedicated command and a higher layer
protocol must be used.

Experimental tests carried out have shown that a suitable
compromise is possible between the usage of Matlab while
maintaining a suitable throughput. The communication
protocol presented and the function for handling transmission
can be used wherever there is a need for an efficient
communication of a system based on Matlab with, for
example, distributed measurement sensors.

ACKNOWLEDGMENT

This work has been supported by the Military University of
Technology, Warsaw, Poland, as a part of the project PBS661.

REFERENCES

[1] MathWorks, MATLAB® Product Family, www.mathworks.com, 2016

[2] A.Panda, H. Wong, V. Kapila, S. H. Lee, “Matlab Data Acquisition and
Control Toolbox for Basic Stamp Microcontrollers”, 2006 45th IEEE
Conference on Decision and Control, 2006, pp. 3918-3925.

[3] MN. Elya, M. Logman, M. Agilah, S. Murniati, “Development of
simple setup for model identification using Matlab Data Acquisition”,

2013 IEEE International Conference on Control System, Computing and
Engineering (ICCSCE), 2013, pp. 52-57.

108

(4]

(3]

(6]

(7]

(8]

(9]

[10]
[11]

[12]
[13]

SIECZKOWSKI and SONDEJ: REAL-TIME DATA ACQUISITION BASED ON COMMON USE INTERFACES AT MATLAB ...

N. Belgacem, S. Assous, F. Bereksi-Reguig, “Bluetooth portable device
and Matlab-based GUI for ECG signal acquisition and analisys”, 2011
7th International Workshop on Systems, Signal Processing and their
Applications (WOSSPA), 2011, pp. 87-90.

A. Z. Alkar, M. A. Karaca, ,,An Internet-Based Interactive Embedded
Data-Acquisition System for Real-Time Applications”, IEEE Trans. on
Instrum. and Measurement, 2009, Vol. 58, Issue 3, pp. 522-529.

P. Cao, K. Song, J. Yang, K. Zhang, “A real-time data transmission
method based on Linux for physical experimental readout systems”,
2012 18th IEEE-NPSS Real Time Conference (RT), 2012, pp. 1-5.

J. Zhang, J. Wu, Z. Han, L. Liu, K. Tian, J. Dong, “Low Power,
Accurate Time Synchronization MAC Protocol for Real-Time Wireless
Data Acquisition”, IEEE Transactions on Nuclear Science, 2013, Vol.
60, Issue 5, pp. 3683-3688.

K. Roézanowski, M. Sawicki, T. Sondej, “Wireless Measurement
Modules for Multichannel Drivers Monitoring System”, Przeglad
Elektrotechniczny, R. 89, No. 12/2013, pp. 138-141.

ST Microelectronics, STM32 http://www.st.com/web/en/catalog/mmc/F
M141/SC1169/SS1577/LN11, 2016

FTDI, FT232RL Data Sheet, http://www.ftdichip.com, 2016

Microchip, RN41 Data Sheet, http://ww1.microchip.com/downloads/en/
DeviceDoc/rn-41-ds-v3.42r.pdf, 2016

Zentri, ADS-MWx06-WiConnect-106R, http://ack.me, 2016
https://www.raspberrypi.org, 2017

Krzysztof Sieczkowski was born 20th July 1990 in
Lowicz. He received B.Sc. and M.Sc. degrees in
electronics and telecommunications from Military
University of Technology, Poland, in 2014 and 2015,
respectively. He is currently working toward the PhD
degree in electronic engineering. His main scientific
interests are measurement and analysis of biometric
signals, especially detection strokes in blood
pressure and energy-efficient microprocessor
systems.

Tadeusz Sondej received the M.Sc. degree in
electronic engineering and the Ph. D. degree in
applied sciences from the Military University of
Technology (MUT), Warsaw, Poland, in 1997 and
2003 respectively. Since 1998, he has been with the
MUT, where he has been working on design and
programming of embedded systems. His current
interests are in the field of design, optimization and
programming of System-on-Chip based digital
systems, especially for biomedical applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

