PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A constant intensity technique to improve the performances of devices based on direct absorption spectroscopy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Advanced Infrared Technology and Applications - AITA 2013 (12 ; 10-13.09.2013 ; Turin, Italy)
Języki publikacji
EN
Abstrakty
EN
We describe an all-in-fibre apparatus for Constant Intensity Direct Absorption Spectroscopy (CIDAS) for gas concentration measurements which keeps the power of a diode laser constant along the frequency sweep. The reduction of the large variation of the laser power, connected to the frequency scan, enhances the ability of detecting small variations in a background signal, resulting in an increase of the sensitivity with respect to standard direct absorption techniques. Moreover, CIDAS allows for a real-time observation of the absorption signals without any kind of post-detection processing. The apparatus has been tested with carbon dioxide (CO₂) and methane (CH₄), around 1.57 and 1.65 μm, respectively.
Twórcy
autor
  • CNR-INO, V. G. Sansone 1, 50019 Sesto Fiorentino (FI), Italy
  • LENS, University of Florence, V. N. Carrara 1, 50019 Sesto Fiorentino (FI), Italy
autor
  • LENS, University of Florence, V. N. Carrara 1, 50019 Sesto Fiorentino (FI), Italy
autor
  • LENS, University of Florence, V. N. Carrara 1, 50019 Sesto Fiorentino (FI), Italy
  • CNR-INO, V. G. Sansone 1, 50019 Sesto Fiorentino (FI), Italy
autor
  • CNR-INO, L.go E. Fermi 6, 50125 Firenze, Italy
autor
  • CNR-INO, L.go E. Fermi 6, 50125 Firenze, Italy
Bibliografia
  • 1. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis”, Opt. and Laser Eng. 37, 101-1 14 (2002).
  • 2. A. Lucchesini, I. Longo, C. Gabbanini, S. Gozzini, and L. Moi, “Diode laser spectroscopy of methane overtone transitions”, Appl. Opt. 32, 5211-5216 (1993).
  • 3. J.A. Silver, “Frequeney-modulation spectroscopy for trace species detection: theory and comparison among experimental methods”, Appl. Opt. 31, 707-17 (1992).
  • 4. P. Werle, F. Slemr, M. Gehrtz, and C Briiuchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser”, Appl. Phys. 1549, 99-108 (1989).
  • 5. F. D’Amato and M. De Rosa, “Tunable diode lasers and two-tone frequency modulation spectroscopy applied to atmospheric gas analysis”, Opt. Laser Eng. 37, 533-551 (2002).
  • 6. A. Miklos and M. Feher, “Optoacoustic detection with near-infrared diode lasers: trace gases and short-lived molecules”, Infrared Phys. Techn. 37, 21-27 (1996).
  • 7. A. O'Keefe and D. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using Pulsed Laser Sources”, Rev. Sci. Instr. 59, 2544-2551 (1998).
  • 8. P. Werle, C. Dyroff, A. Zahn, P. Mazzinghi, and F. D’Amato, “A new concept for sensitive in-situ stable isotope ratio infrared spectroscopy based on sample modulation”, Isot. Environ. Healt. S. 41, 323-333 (2005).
  • 9. F.M. Schmidt, A. Foltynowicz, W.G. Ma, and O. Axner, “Fibre-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range”, J. Opt. Soc. Am. B - Opt. Phys. 24, 1392-1405 (2007).
  • 10. B. Tuzson, M. Mangold, H. Looser, A. Manninen, and L. Emmenegger, “Compact multipass optical cell for laser spectroscopy”, Opt. Lett. 38, 257-259 (2013).
  • 11. E. De Tommasi, G. Casa, and L. Gianfrani, “An intensity-stabilized diode-laser spectrometer for sensitive detection of NH3”, IF.EE T. Instrum. Meas. 56, 309-312 (2007).
  • 12. S. Viciani, F. D’Amato, P. Mazzinghi, F. Castagnoli, G. Toci, and P.W. Werle, “A cryogenic operated diode-laser spectrometer for airborne measurement of stratospheric trace gases”, Appl. Phys. 1590, 581-592 (2008).
  • 13. L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database, J. Quant. Spectrosc. Ra. 96, 139-204 (2005).
Uwagi
EN
The authors acknowledge the financial support of Regione Toscana, in the frame of ”POR CREO FESR 2007-2013”, Project SIM PAS (Innovative Measurement Systems for the protection of Environment and Health).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2227b2c-254b-4d8f-a4e2-0ded137087bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.