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Considering the non-linear characteristics of the activation functions, the entire 
task is multidimensional and non-linear with a multimodal target function. Imple-
menting evolutionary computing in the multimodal optimization tasks gives devel-
opers new and effective tools for seeking the global minimum. A developer has to 
find the optimal and simple transformation between the realization of a phenotype 
and a genotype. In the article, a two-layer neural network is analysed. In the first 
step, the population is created. In the main algorithm loop, a parent selection mecha-
nism is used together with the fitness function. To evaluate the quality of evolution-
ary computing process different measured characteristics are used. The final results 
are depicted using charts and tables. 
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1. Introduction 

Genetic Algorithms (GA) and Evolutionary Algorithms (EA) are in some re-
spect inspired by the process of natural selection. A given environment is filled 
with a population of individuals that strive for survival and reproduction. The fit-
ness of these individuals represents their chances of survival. Between the concepts 
of natural evolution and computer calculation one can appoint the following  
relation [1]: 
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Environment – Solving problem 
Individuals – Candidate solution 
Fitness value – Quality or target. 

Everybody should be very careful when interpreting the results achieved; taking 
into account the differences between a natural environment and a computer envi-
ronment built with silicon and mathematics. From the historical point of view, 
three different implementations of the basic idea have been developed. In the USA, 
Fogel, Owen and Walsh introduced Evolutionary Programming (EP), while Hol-
land called his method a Genetic Algorithm (GA); in Germany Rechenberg and 
Schwefel invented the Evolution Strategy. Since 1990, all streams following the 
general idea emerged as Genetic Programming (GP). Now the whole field of evo-
lutionary computing is known as Evolutionary Algorithm (EA). In the article the 
last term is used.  

In the article, an EA is implemented to a two-layer Artificial Neural Network 
(ANN) in the teaching process. An ANN has valuable characteristics, such as ap-
proximating any non-linear mapping and generalization, parallel and distributed 
computation, learning and adaptation. Both parallel and distributed computation 
especially correlate with the genetic and evolutionary algorithm structures. Evolu-
tionary Algorithms are interpreted as a generalization of a genetic algorithm. In an 
EA, the evolution principle and inheritance are implemented, as well as using the 
appropriate data structure according to the solving task. For an ANN a real figure 
matrix is applied. Using this, the appropriated variations of operators are used. 

2. Standard learning algorithm structure 

The simplest ANN structure is described as a two-layer ANN (Fig. 1). The in-
put vector data X are put into input neurons, which are multiplied by appropriate 
matrix W1 weight coefficients of an ANN structure. Using different types of acti-
vation function, the output signal of the first layer is calculated as vector U. Again 
this vector is multiplied by matrix W2 weight coefficients and after the activation 
function, the output vector Y is achieved. In the next step, this vector is compared 
with the teaching vector Z and the target function Φ value is calculated. As a teach-
ing function, the minimum of the mean square error (MSE) is usually used.  
According to the ANN scheme structure, a set of formulas is calculated. 
Stepping back from the left to the right, the target function is calculated: 

Φ = (� − �)� ∗ (� − �)	                        (1) 
where: 
Y – the output vector of a two-layer ANN, 
Z – the teaching vector, one from the epoch set. 
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The ANN output Y has the following vector structure form 

                                                             � = �(�2 ∗ �)                                          (2) 

where: 
F – the vector’s structure of the activation function, 
W2 – the output layer’s matrix of the weight coefficients, 
U – the internal vector that is the output vector of the hidden layer. 

The vector U represents the output of the hidden layer. The hidden layer plays a 
fundamental role in the ANN learning algorithm. The input vector X is divided into 
vector U of the higher dimensionality in a new space.  

                                                 � = �(�1 ∗ �)                             (3) 

where: 
F – the vector’s structure of the activation function. Usually it is a sigmoid or a 
tanh function, 
W1 – the hidden matrix of the weight coefficients, 
X – the input vector, one from the epoch. 

 

 
Figure 1. Backpropagation algorithm structure for a two-layer ANN 

 
In the next step two differences are calculated, for W1 and W2 appropriately, 

and all weight coefficients are modified. So, the iteration is finished and the new 
input vector X and the learning vector Z from the epoch are used and the entire 
procedure is repeated. Only one model of matrix weight coefficients (W1, W2) is 
used (using the EA terminology: only one individual is used). In the EA, a set of 
individuals is generated. Evaluating the output vector Y is fulfilled in a parallel 
way, so the gradient calculation is unnecessary. 
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3. Evolutionary Algorithm structure 
 

The basic model is different in an EA calculation. We have to define the set of 
ANN individuals with one input Y and the output learning vector Z (Fig. 2). These 
individuals are a unit of selection. Their reproductive success depends on how well 
they are evaluated by the target function. The more successful individuals have a 
higher ability to reproduce in the next generation. Additionally, mutations give rise 
to new individuals to be tested. Thus, as the iteration passes, there is a chance in 
the constitutions of the population. The whole set of individuals is known as a pop-
ulation. In an ANN every individual is represented by the weight coefficients, both 
matrices W1, W2, which connect the input signal X with the output Y. In the EA 
terminology, a matrix is defined as two chromosomes – an individual calculation 
entity. A chromosome contains a set of weight coefficients known as genes. Genes 
are expressed in natural figures. This is the basic difference between EA and GA. 
Remember, that in the GA all genes have bit representation.  
 

 
Figure 2. An EA algorithm structure for two chromosomes and a popsize population 

 
Target function is a set of a popsize individual’s target function.    

                                        Φ	
= [Φ
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]                                   (4) 

Every individual’s target function is calculated according to formulas (5) and (2), (3) 

                                 min 	Φ
�
= (	�� − �)� ∗ (	�� − �)	                                     (5) 

where: 
! = !�, !�, !�, …	!������� – the set of individuals. 

Thus, a set of genes creates a chromosome. According to Fig. 2, an EA struc-
ture contains the “number of individuals” dimensionality, popsize. The input vector 
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��[0:$%], in a parallel way is sending into the popsize matrix W1 � vector U  
� matrix W2 � to output vector Y. All output vectors ��[0:$�] are evaluated and 
the fitness function Φ� for every individual is calculated. One of the most im-
portant and necessary parameters is the number of individuals (or parents) &, and 
the number of offspring (children) '. The decision is not simple. If one decides to 
increase the number of both the individuals and the offspring, the algorithm will 
look through the solving space better. But, on the other hand, this process is time-
consuming and finding the final solution could last too long. Comparing Figures 1 
and 2 one can see the main differences between a standard backpropagation algo-
rithm and an EA structure. A backpropagation algorithm is serial. Solving space is 
indwelled by an algorithm using information contained in the target function gradi-
ent. An EA is a parallel algorithm. In a parallel way, the set of individuals  
indwells solving space, looking for the best individuals fitted to the target function 
(the solving task). 

4. Evolutionary Algorithm’s components 

In literature, one can find many different variants of an EA. But there are 
common technics behind all of them. There is a population of individuals within 
some environment (giving a target function). These individuals compete using the 
natural selection (survival of the fittest). This, in turn, causes a rise of the popula-
tion. Giving the target function (the quality function to be maximized), an algo-
rithm randomly creates a set of candidate solution. The target function is applied as 
an abstract fitness measure. On the basis of these fitness values some of the better 
candidates are chosen to seed the next generation, which is fulfilled by applying 
recombination and mutation to them. Therefore, by executing the variation opera-
tors on the parents, a new set of candidates is generated (the offspring). A new 
target function value is evaluated and competition is created. For competition, a 
different algorithm is used – the fittest, the maximum age. This process can be 
iterated until a candidate with the maximum quality is found. To summarize, one 
can conclude [1]: 

• EAs are population-based. They process a whole collection of candidate 
solution in a parallel way. 

• EAs can use recombination, mixing information from two or more candi-
dates and mutation for one candidate. 

• EAs are stochastic using a lot of randomly generated data. 

Below, the most important components of EAs are described: 
• Individuals' representation. For an ANN a set of matrices will be applied. 
• Evaluation function, target function or fitness function.  
• Population dimensionality, popsize. 



124 
 

• Individual (parent) selection. 
• Variation operators. Recombination and mutation to the matrix structure 

will be applied. 
• Replacement (survival selection mechanism). 

The general block scheme of the EA is given in Figure 3. It contains all the main 
components and the relations between them. Every block in the scheme could be 
realized in many ways and could be implemented by various algorithms, which are 
also described in Figure 3. 
 

 
Figure 3. Scheme of Evolutionary Algorithm structure 

4.1. The representation of an ANN weight coefficients 

As stated above, an ANN layer structure is described as the weight coeffi-
cients matrices W1, W2. For the long input vector X, the hidden vector U and the 
output vector Y, the matrices’ dimensionality could be big and contain a lot of 
weight coefficients. 
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For the input vector $% = 50, the hidden vector $� = 80 and the output vector 
$�= 30, matrices’ dimensionalities are:  

 W1= ||4080|| figures. 

 W2= ||2480|| figures.  

Total number of genes = 6560. For the binary representation, the total bit 
number will be huge. The final conclusion is simple – using binary code for matrix 
weight coefficients representation is not adequate. In contrast, taking the real value 
matrix weight representation is the appropriate decision. From the calculation point 
of view, the coding and decoding step is omitted in each iteration. The algorithm 
works faster. The main role of the evaluation function, target function or fitness 
function is to represent the requirements the population should adopt to meet. It is 
the base for the selection step and it boosts improvements.  

4.2. Evaluation function 

As it is standard in an ANN teaching process, the minimum of the mean 
square error (MSE) is used (1).  

It should be as minimal as possible. However, in an EA the maximum of the 
target function is required to use the proportional selection. The simplest method is 
to change the minimum to the maximum,  

                                max,−Φ(-)] = min[Φ(-)].                            (6) 

But this simple method cannot guarantee that all −Φ(-) ≥ 0, which is re-
quired by the proportional selection. A better way is to add the constant number C 
to all fitness values, achieving  
                                        0 − Φ(-) ≥ 0.                                       (7) 

The problem is that it is hard to select the proper C value. If C is small, it can-
not guarantee that 0 − Φ(-) ≥ 0 for all individuals. For an ANN teaching target 
function, the maximum of fitness value in the current population is calculated, 
which guarantees that: 

                                Φ123 	(x) − Φ(-) ≥ 0.                           (8) 

In this way, the minimum optimization problem could be changed to: 

                               max	,Φ123 	(x) − Φ(-)}.                           (9) 

4.3. Population dimensionality 

The role of a population is to represent a possible solution. In an ANN, the 
population is a multi-set of matrices and forms the unit of evolution. In almost all 
EA applications the population size is constant and does not change during the 
iteration process. The selection operators (two-step, parent selection and survival 
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selection) work on the population level. But, in contrast, the variation operators 
(crossover and mutation) act on parent individuals. A population should have an 
adequate property. The main parameter is known as diversity and measures the 
number of different solutions (12). Other statistical measures, such as variation 
(14) and entropy, are used. If the popsize population is big, diversity is usually 
better, but an algorithm needs more time to evaluate the target functions. A set of 
formulas is calculated to measure the EA’s characteristics: 

Φ567 = ⋁ 	⋁ 	9∈������� ,	�∈������� Φ567 = Φ� ≥ Φ9}                (10) 
 

Φ5�; = ⋁ 	⋁ 	9∈������� ,	�∈������� Φ567 = Φ� ≤ Φ9}           (11) 
 

∆ = Φ567 	−	Φ5�;                                        (12) 
 

Φ6=�> =	
�

�������
∗ ∑ Φ�

�������
�@�                                      (13) 

 

Var = 
�

�������
∗ ∑ (Φ� −	Φ6=�>)

��������
�@�                               (14) 

where: 
Φ6=�> – the average value of the fitness function for all population, 
Var – the variation value as a diversity measure. 

4.4. Parent selection mechanism 

Selection process imitates natural selection by granting fitter individuals high-
er opportunity to be selected into the crossover process. Individual “i” in the cur-
rent population has a fitness value Φ�. Fitter individuals have more chances to be 
selected and a relative fitness value of individuals is calculated: 

                       !� =	
AB

∑ AB
BCDEDFBGH
BCI

                    (15) 

In the program selection, an algorithm is simulated by the roulette and this 
process is known as roulette wheel selection (RWS). In this way, some individuals 
in the population will be selected more than once and some will never be selected. 
But, from time to time, the fitter individuals could not be selected by RWS. This 
process is known as selection bias. To avoid this for an ANN, stochastic universal 
sampling (SUS) is used, as suggested by Baker [2]. RWS has one arrow. If the 
arrow stops at area “i”, an individual “i” is selected. RWS is carried out in a serial 
way. SUS has popsize uniformly distributed arrows (Fig. 4). If any arrow “i” stops 
at area “j”, “j” individuals are selected. SUS works in a parallel way and could 
perform proportional selection without bias. 
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Figure 4. Stochastic Universal Sampling algorithm. Source: [5] 

4.5. Mutation operator 

In an EA implementation, only the mutation operator is proposed. Using 
the mutation probability parameter !5, selected from the whole population, a 
gene could be modified by Uniform Mutation. 

                    J1�9
�
= KLMN	(L, O)                               (16) 

            J2�9
�
= KLMN(L, 	O)	                                    (17) 

Where a, b are the upper and lower domain value, respectively. In this algorithm, 
one can define the domain parameters in an arbitrary way. A better result is 
achieved using Normal Mutation. For a normal distributed randomly, the possible 
of the mutant value will be in the range: 

                         (J�9
�
− 3 ∙ R	;	J�9

�
+ 3 ∙ R)                    (18) 

Where R is the standard deviation. Mutation is calculated by formula (19). 

                  J1�9
�
(M + 1) = 	J�9

�
(M) + R ∙ $(0,1)       (19) 

 

                  J2�9
�
(M + 1) = 	J2�9

�
(M) + R ∙ $(0,1)       (20) 

5. Numerical example 

A simple classification problem was investigated as an example for a two-
layer ANN with configuration 3-7-1 (3 input neurons, 7 hidden, 1 output).  
Data located in a three-dimensional space have to be classified in two categories:  
−1 and 0. 
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Figure 5. Three population characteristics: minimum, average and maximum target  
function values as a function of iteration number. Mutation parameter: sigma = 1 

 
An Evolutionary Algorithm used selection and a mutation operator as main 

algorithmic forces. A cross operator was ignored. For a mutation operator, two 
parameters were used: sigma, according to formulas (19) and (20), modified the 
weight matrices W1, W2 coefficients with probability pm = 0.01. To study the learn-
ing process’ dynamic characteristics, only sigma was modified. In Figure 5, the 
entire learning process can be divided into two parts. At the beginning, all three 
parameters (minimum, average, maximum) are greater than zero. After about 40 
iterations, a set of population achieves the minimum target function value and the 
learning process could be finished, but the average value is still greater than zero. 
After 80 iterations, the algorithm was stopped. 
 

 
Figure 6. Three population characteristics: minimum, average and maximum target  

function value as a function of the iteration number 
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In Figure 6, for sigma = 0.5 all characteristics of the learning process go more 
smoothly. The average value achieves zero in an asymptotic way. In Figure 7,  
a variation operator is shown. 
 

 
Figure 7. Variation as a measure of selection pressure. 

 
The variation operator characterizes the population’s diversity and, for  

sigma = 0.5, a population very quickly concentrates around the target function (the 
minimum value is close to zero). For sigma = 0.5 we can observe that the selection 
pressure is too high. As far as the algorithm’s stability is concerned, it is not a good 
strategy as it converges too fast. 

 

6. Conclusion 

An ANN calculates the output value Y using all the neurons in layers (hidden 
and output), which are working in a parallel way. The modern computers with mul-
tiprocessors and programming languages have the tools to use ANNs in a wide 
area. An EA, using real figures value in genes, chromosome and population repre-
sentation as the basic for its structure, can use the same computers and program-
ming features. So, the connection of these two tools increases the final calculation 
power and speed. The article, in a very abbreviated form, describes all the main 
features and elements of an EA structure. In the calculation example, SUS selection 
process and Normal Mutation algorithms were used. As the replacement mecha-
nism the simplest algorithm was used, too. The popsize individuals (parents) gen-
erate the same offspring number, so the population is constant during the iteration 
process & = '. Using a threshold activation function, an algorithm needs less itera-
tion to achieve the final target function value. Using a standard sigmoid function,  
a backpropagation algorithm needs more iteration to achieve the saturation value. 
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There are two important issues in the evolution process: population diversity and 
selective pressure. These factors are related: an increase in the selective pressure 
decreases the diversity of the population, and vice versa. Strong selective pressure 
supports the premature convergence. Future work will be concentrated on the adap-
tation algorithm for Normal Mutation. The sigma parameter has to change its val-
ue. When the learning algorithm starts, the sigma should be quite big and should 
decrease during iteration. 

REFERENCES 

[1] Eiben A.E., Smith J.E.: Introduction to Evolutionary Computing, Second Edition, 
Springer 2003, 2015. 

[2] Michalewicz Z.: Genetic Algorithm + Data Structure = Evolutionary Programs, 
Springer-Verlag Berlin Haidelberg 1996. 

[3] Montana DJ, Davis L.: Training Feedforward Neural Network Using Genetic Algo-
rithms. Proceedings of the 1989 International Join Conference on Artificial Intelli-
gence", Morgan Kaufmann Publishers, San Mateo CA 1989. 

[4] Goldberg David E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing, Addison-Veslay Publishing Company, Inc. 1989. 

[5] Xinjie Yu, Mitsuo Gen: Introduction to Evolutionary Algorithm, Springer London 

2010. 

[6] Nolfi Stefano, Floreano Dario: Evolutionary Robotics, The MIT Press, Cambridge, 
Massachusetts, London 2000. 

 


