PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The stability of a steel welded girder with bending and shear forces included

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The stability of the element of a steel welded girder subjected to bending and shear forces is considered. The considered element is a rectangular plate supported on boundary. The type of a plate boundary conditions depend on the types (thickness) of the stiffeners. Considered plate is loaded by in-plane forces causing bending and shear effects. The Finite Element Method was applied to carry out the analysis. Additionally the Boundary Element Method in terms of boundary-domain integral equation was applied to evaluate the critical shear loading.
Rocznik
Strony
14--19
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
  • Polytechnic Faculty, The President Stanisław Wojciechowski Higher Vocational State School in Kalisz, Poznańska 201-205, Kalisz, Poland
autor
  • Institute of Structural Engineering, Poznan University of Technology, Piotrowo 5, 60-965 Poznan, Poland
autor
  • Institute of Structural Engineering, Poznan University of Technology, Piotrowo 5, 60-965 Poznan, Poland
Bibliografia
  • 1. Abaqus, Abaqus Manuals. (2005), Inc. Providence.
  • 2. Biegus A., Kowal A. (2013), Collapse of halls made from coldformed steel sheets, Engineering Failure Analysis, 31, 189–194.
  • 3. Chinnaboon B., Chucheepsakul S., Katsikadelis J.T. (2007), A BEM-bases Meshless Method for Buckling Analysis of Elastic Plates with Various Boundary Conditions, Journal of Structural Stability and Dynamics, 1(7), 81–89.
  • 4. Chybiński M. (2015), Load capacity and stability of steel thin-walled beams with local stiffening elements, The Poznan University of Technology Publishing House, Poznan (in Polish).
  • 5. Chybinski M., Rzeszut K., Garstecki A. (2013), Snap-through phenomenon of imperfect steel structures, Proceedings of International Conference Design, Fabrication and Economy of Metal Structures, Miskolc, Hungary, Springer-Verlag.
  • 6. Garstecki A., Rzeszut K. (2009), Modeling of initial geometrical imperfections in stability analysis of thin-walled structures, Journal of Theoretical and Applied Mechanics, 47(3), 667–684.
  • 7. Gosowski B. (1999), Spatial bucling of thin-walled steel-construction beam-columns with discrete bracings, Journal of Constructional Steel Research, 52(3), 293–317.
  • 8. Guminiak M. (2014), An Alternative Approach of Initial Stability Analysis of Kirchhoff Plates by the Boundary Element Method, Engineering Transactions, 62(1), 33–59.
  • 9. Guminiak M., Sygulski R. (2003), Initial stability of thin plates by the Boundary Element Method, Stabililty of Structures X Symposium, Zakopane, Poland, eds.: K. Kowal-Michalska, Z. Kołakowski.
  • 10. Litewka B., Sygulski R. (2010), Application of the fundamental solutions by Ganowicz in a static analysis of Reissner’s plates by the boundary element method, Engineering Analysis with Boundary Elements, 34(12), 1072–1081.
  • 11. Marcinowski J. (2007), Stability of relatively deep segments of spherical shells loaded by external pressure, Thin-Walled Structures, 45(10–11), 906-910.
  • 12. Rakowski G., Kacprzyk Z. (2005), The Finite Element Method in Stuctural Mechanics, The Warsaw University of Technology Publishing House, Warsaw (in Polish).
  • 13. Rzeszut K., Garstecki A. (2011), Thin-walled structures with slotted connections in stability problems,Thin-Walled Structures, 49, 674–681.
  • 14. Rzeszut K., Garstecki A. (2013), Stability of thin-walled structures accounting for initial imperfections and clearances, in.: Statics, dynamics and stability of structures, Vol. 3, 127–146.
  • 15. Rzeszut K., Polus Ł. (2013), Classes of Cross-Sections of Steel Structrural Elements in the Fire Situation, Procedia Engineering, 57, 967–976.
  • 16. Shi G. (1990), Flexural vibration and buckling analysis of orthotropic plates by the Boundary Element Method, Journal of Thermal Stresses, 26(12), 1351–1370.
  • 17. Timoshenko S., Woynowsky-Krieger S. (1962), Theory of elstic stability, Arkady, Warszawa.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b219f93c-e72c-415c-8297-d10f9d3efaa6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.