PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemical and radiochemical characterization of phosphogypsum from Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Development and Applications of Nuclear Technologies NUTECH 2023 (22-24 September 2023 ; Krakow, Poland)
Języki publikacji
EN
Abstrakty
EN
The current study presents the results of the chemical and the radiochemical characterization of phosphogypsum obtained from the former Wizów Chemical Plant in Poland. Phos phogypsum is a residue obtained from phosphoric acid production. Phosphogypsum mainly contains calcium sulfate dihydrate and impurities originating from the source phosphate rock, including toxic trace elements and natural radionuclides. The phosphogypsum stacks occupy a large area and are an environmental issue today. The project “Phosphogypsum Processing to Critical Raw Materials”, currently realized at the Institute of Nuclear Chemistry and Technology, focuses on the use of phosphogypsum from the Polish stacks as material to recover rare earth elements (REEs). The remaining gypsum matrix can be used as an inexpensive material in construction. The chemical and radiological characterization of the radioactive isotopes present in phosphogypsum was performed by using inductively coupled plasma mass spectrometry (ICP-MS) and the gamma spectrometry technique. The radioactivity of the Polish phosphogypsum was then compared with the radioactivity of the phosphogypsum waste present worldwide.
Czasopismo
Rocznik
Strony
113--117
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
  • Institute of Nuclear Chemistry and Technology Dorodna 16 St., 03-195 Warsaw, Poland
  • Institute of Nuclear Chemistry and Technology Dorodna 16 St., 03-195 Warsaw, Poland
  • Institute of Nuclear Chemistry and Technology Dorodna 16 St., 03-195 Warsaw, Poland
  • Institute of Nuclear Chemistry and Technology Dorodna 16 St., 03-195 Warsaw, Poland
Bibliografia
  • 1. Tayibi, H., Choura, M., Lopez, F. A., Alguacil, F. J., & Lopez-Delgado, A. (2009). Environmental impact and management of phosphogypsum. J. Environ. Manage., 90, 2377–2386. DOI: 10.1016/j.jenvman.2009.03.007.
  • 2. Cichy, B. (Ed.). (2012). Odpady nieorganiczne przemysłu chemicznego – foresight technologiczny. Retrieved November 5, 2023, from http://supra.home.amu.edu.pl/files/monographs/odpady_nieorganiczne_przemyslu_chemicznego_-_foresight_technologiczny.pdf.
  • 3. Osmanlioğlu, A. E. (2021). Technologically enhanced naturally occurring radioactive materials. In Rehab O. Abdel Rahman & Chaudhery Mustansar Hussain (Eds.), Handbook of advanced approaches towards pollution prevention and control (pp. 221–243). Elsevier. DOI: 10.1016/B978-0-12-822121-1.00011-4.
  • 4. Layr, K., & Hartlieb, P. (2019). Market analysis for urban mining of phosphogypsum. Berg Huettenmaenn Monatsh, 164(6), 245–249. DOI: 10.1007/s00501-019-0855-8.
  • 5. Bilal, E., Bellefqih, H., Bourgier, V., Mazouz, H., Dumitras, D. -G., Bard, F., Laborde, M., Caspar, J. P., Guilhot, B., Iatan, E. -L., Bounakhla, M., Iancu, M. A., Marincea, S., Essakhraoui, M., Li, B., Diwa, R. R., Ramirez, J. D., Charnysh, Y., Chubur, V., Roubik, H., Schmidt, H., Beniazza, R., Cánovas, C. R., Nieto, J. M., & Haneklaus, N. (2023). Phosphogypsum circular economy considerations: A critical review from more than 65 storage sites worldwide. J. Clean Prod., 414, 137561. DOI: 10.1016/j.jclepro.2023.137561.
  • 6. International Atomic Energy Agency. (2013). Radiation protection and management of NORM residues in the phosphate industry. Vienna: IAEA. (Safety Reports Series no. 78).
  • 7. Chernysh, Y., Yakhnenko, O., Chubur, V., & Roubík, H. (2021). Phosphogypsum recycling: A review of environmental issues, current trends, and prospects. Appl. Sci., 11, 1575. DOI: 10.3390/app11041575.
  • 8. Haneklaus, N., Barbossa, S., Basallote-Sánchez, D. M., Bertau, M., Bilal, E., Chajduk, E., Chernysh, Y., Chubur, V., Cruz, J., Dziarczykowski, K., Kiegiel, K., Grosseau, P., Fröhlich, P., Mazouz, H., Nieto, V., Miguel, J., Villacis Nieto, J. M., Pavón Regaña, S., Pessanha, S., Pryzowicz, A., Roubik, H., Cánavas, C. R., Schmidt, H., Seeling, R., & Zakrzewska-Kołtuniewicz, G. (2022). Closing the upcoming EU gypsum gap with phosphogypsum. Resour. Conserv. Recycl., 182, 106328. DOI: 10.1016/j.resconrec.2022.106328.
  • 9. Arhouni, F. E., Hakkar, M., Mahrou, A., Belahbib, L., Mazouz, H., Haneklaus, N., Pavón, S., Bertau, M., Boukhair, A., Ouakkas, S., Abdo, M. A. S., & Benjelloun, M. (2022). Better filterability and reduced radioactivity of phosphogypsum during phosphoric acid production in Morocco using a fly ash waste and pure silica additive. J. Radioanal. Nucl. Chem., 331, 1609–1617. DOI: 10.1007/s10967-022-08235-y.
  • 10. Grabas, K., Pawełczyk, A., Stręk, W., Szełęg, E., & Stręk, S. (2019). Study on the properties of waste apatite phosphogypsum as a raw material of prospective applications. Waste Biomass Valorization, 10, 3143–3155. DOI: 10.1007/s12649-018-0316-8.
  • 11. Kulczycka, J., Kowalski, Z., Smol, M., & Wirth, H. (2016). Evaluation of the recovery of rare earth elements (REE) from phosphogypsum waste – case study of the Wizow Chemical Plant (Poland). J. Clean Prod., 113, 345–354. DOI: 10.1016/j.jclepro.2015.11.039.
  • 12. European Union. (2013). Council Directive 2013/59/EURATOM – Annex VIII. Available form http s://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32013L0059.
  • 13. European Union. (2022, September). Critical raw materials act: Securing the new gas & oil at the heart of our economy. European Commission-Statement.
  • 14. Mas, J. L., San Miguel, E. G., Bolívar, J. P., Vaca, F.,& Pérez-Moreno, J. P. (2006). An assay on the effect of preliminary restoration tasks applied to a large TENORM wastes disposal in the South-West of Spain. Sci. Total Environ., 364, 55–66. DOI: 10.1016/j.scitotenv.2005.11.0.
  • 15. El-Afifi, E. M., Hilal, M. A., Attallah, M. F., & El Reefy, S. A. (2009). Characterization of phosphogypsum wastes associated with phosphoric acid and fertilizers production. J. Environ. Radioact., 100, 407–412.DOI: 10.1016/j.jenvrad.2009.01.005.
  • 16. Rutherford, P. M., Dudas, M. J., & Samek, R. A. (1994). Environmental impacts of phosphogypsum. Sci. Total Environ., 149, 1–38. DOI: 10.1016/0048-9697(94)90002-7.
  • 17. Bituh, T., Petrinec, B., Skoko, B., Babić, D., & Rašeta, D. (2021). Phosphogypsum and its potential use in Croatia: challenges and opportunities. Arhiv za Higijenu Rada i Toksikologiju, 72, 93–100. DOI: 10.2478/aiht-2021-72-3504.
  • 18. Ndour, O., Thiandoume, C., Traore, A., Cagnat, X., Diouf, P. M., Ndeye, M., Sadikhe Ndao, A., & Tidjani, A. (2021). Determination of natural radionuclides in phosphogypsum samples from phosphoric acid production industry in Senegal. Environ. Forensics. DOI: 10.1080/15275922.2021.2006362.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b218acf1-f3e1-4824-a07c-93095e4aca4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.