PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Balancing challenges: exploring postural stability in osteogenesis imperfecta

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Abnormalities in bone structure impact motor functions, including the ability to maintain stable posture. This study assessed static and dynamic balance in patients with osteogenesis imperfecta (OI) across different disease types, compared to a healthy population. Methods: The study group included 87 patients with OI: Type I (n = 45), Type III (n = 28), and Type IV (n = 14). Balance was assessed using the AMTI (Advanced Mechanical Technology, Inc.) platform. Measurements in standing (ST) position during anterior-posterior (AP) and medial-lateral (ML) tilts, with eyes open, for 30 seconds. Results: Significant differences in balance parameters under static conditions were found between OI types (61.5% between Types I and III, 38.5% between Types I and IV, and 30.7% between Types III and IV). Across all OI types, maintaining balance predominantly involved displacement of the COP (Centre of Pressure) in the sagittal plane, observed in 84.7% of Type II OI, 75.2% of Type III OI and 74.5% of Type IV OI cases. Under dynamic conditions, significant differences in balance parameters were noted in 84.6% of comparisons between Types I and III, 46.1% between Types I and IV, and 69.2% between Types III and IV. Conclusions: Balance assessment in individuals with OI is essential for injury prevention, improving mobility and daily function, and monitoring therapy effectiveness. Development of more preventive strategies aimed at reducing fracture risk and enhancing the quality of life for these patients. The relatively small number of patients with type III and the wide age range represent limitations of our study.
Słowa kluczowe
Rocznik
Strony
181--190
Opis fizyczny
Bibliogr. 36 poz., tab.
Twórcy
  • Pediatric Rehabilitation Clinic, Children’s Memorial Health Institute, Warsaw, Poland.
  • Faculty of Rehabilitation, Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland.
  • Pediatric Rehabilitation Clinic, Children’s Memorial Health Institute, Warsaw, Poland.
Bibliografia
  • [1] BOTOR M., FUS-KUJAWA A., UROCZYNSKA M. et al., Osteogenesis Imperfecta: Current and Prospective Therapies, Biomolecules, 2021, 11 (10), 1493, DOI: 10.3390/biom11101493. Balancing challenges: exploring postural stability in osteogenesis imperfecta 189
  • [2] CARVALHO P.A.F., REGIS T.S., FAIÇAL A.V.B. et al., Functional status of individuals with osteogenesis imperfecta: data from a reference center, J. Pediatr. (Rio J), 2023, 99 (1), 94–98, DOI: 10.1016/j.jped.2022.07.002.
  • [3] CAUDILL A., FLANAGAN A., HASSANI S. et al., Ankle Strength and Functional Limitations in Children and Adolescents with Type I Osteogenesis Imperfecta, Pediatric Physical Therapy, 2010, 22 (3), 288–295, DOI: 10.1097/PEP.0b013e3181ea8b8d.
  • [4] CHO T.J., KO J.M., KIM H. et al., Management of Osteogenesis Imperfecta: A Multidisciplinary Comprehensive Approach, Clin. Orthop. Surg., 2020, 12 (4), 417–429, DOI: 10.4055/cios20060.
  • [5] COÊLHO G., COCATO L., CASTRO L.C. et al., Postural balance, handgrip strength and mobility in Brazilian children and adolescents with osteogenesis imperfecta, Jornal de Pediatria, 2021, 97 (30), 315–320, DOI: 10.1016/j.jped.2020.05.003.
  • [6] DA SILVA R.D., BILODEAU M., PARREIRA R., TEIXEIRA D., AMORIM C., Age-related differences in time-limit performance and force platform-based balance measures during one-leg stance, Journal of Electromyography and Kinesiology, 2013, 23 (3), 634–639, DOI: 10.1016/j.jelekin.2012.11.011.
  • [7] DWAN K., PHILLIPI C.A., STEINER R.D. et al., Bisphosphonate therapy for osteogenesis imperfecta, Cochrane Database of Systematic Reviews, 2016, 10, CD005088, DOI: 10.1002/14651858.CD005088.pub4.
  • [8] ENGELBERT R.H., UITERWAAL C.S., GERVER W.J. et al., Osteogenesis imperfecta in childhood: impairment and disability. A prospective study with 4-year follow-up, Archives of Physical Medicine and Rehabilitation, 2004, 85 (5), 772–778.
  • [9] FORLINO A., MARINI J.C., Osteogenesis imperfecta, Lancet, 2016, 16, 1657–1671, DOI: 10.1016/S0140-6736(15)00728-X.
  • [10] GRAFF K., SZCZERBIK E., KALINOWSKA M. et al., Balance assessment in healthy children and adolescents aged 6-18 years based on six tests collected on AMTI AccuSway force platform, Acta Bioeng. Biomech., 2020, 22 (2), 121–130.
  • [11] GRAFF K., KALINOWSKA M., SZCZERBIK E., SYCZEWSKA M., Changes in balance parameters in group of osteogenesis imperfecta, Gait and Posture, 2018, 65 (Suppl 1), 351–352. https://doi.org/10.1016/j.gaitpost.2018.07
  • [12] GREMMINGER V.L., PHILLIPS C.L., Impact of Intrinsic Muscle Weakness on Muscle-Bone Crosstalk in Osteogenesis Imperfecta, Int. J. Mol. Sci., 2021, 22 (9), 4963, DOI: 10.3390/ijms22094963.
  • [13] HARIRI C., MCKECHNIE J., MASON A. et al., Impairment of muscle mass and muscle function in osteogenesis imperfecta: A systematic review, Endocrine Abstracts, 2023, 12, DOI: 10.1530/endoabs.95.P12.
  • [14] HARRO C., MARQUIS A., PIPER N., BURDIS C., Reliability and validity of force platform measures of balance impairment in individuals with Parkinson disease, Phys. Ther., 2016, 96 (10), 1540–1550, DOI: 10.2522/ptj.20150301.
  • [15] HARRO C., GARASCIA C., Reliability and validity of computerized force platform measures of balance function in healthy older adults, J. Geriatr. Phys. Ther., 2019, 42 (1), 20–26, DOI: 10.1519/JPT.0000000000000131.
  • [16] KUURILA K., KENTALA E., KARJALAINEN S. et al., Vestibular dysfunction in adult patients with osteogenesis imperfecta, Am. J. Med. Genet., 2023, 120 A, 350–358, DOI: 10.1002/ajmg.a.20088.
  • [17] MARINI J.C., REICH A., SMITH S.M., Osteogenesis imperfecta due to mutations in non-collagenous genes: lessons in the biology of bone formation, Curr. Opin. Pediatr., 2014, 26 (4), 500–507.
  • [18] MRAZ M., CURZYTEK M., MRAZ M.A. et al., Body balance in patients with systemic vertigo after rehabilitation exercise, J. Physiol. Pharmacol., 2007, 58 (5), 427–436.
  • [19] NARDONE A., TURCATO A.M., An overview of the physiology and pathophysiology of postural control, Biosyst. Biorobotics, 2018, 19, 3–28.
  • [20] NIJHUIS W., VERHOEF M., VAN BERGEN C. et al., Fractures in Osteogenesis Imperfecta: Pathogenesis, Treatment, Rehabilitation and Prevention, Children, 2022, 9 (2), 268, DOI: 10.3390/children9020268.
  • [21] PARRY S.M., PUTHUCHEARY Z.A., The impact of extended bed rest on the musculoskeletal system in the critical care environment, Extrem. Physiol. Med., 2015, 9 (4), 16, DOI: 10.1186/s13728-015-0036-7.
  • [22] PINHEIRO B., ZAMBRANO M.B., VANZ A.P. et al., Cyclic pamidronate treatment for osteogenesis imperfecta: Report from a Brazilian reference center, Genet. Mol. Biol., 2019, 42 (1, Suppl. 1), 252–260, DOI: 10.1590/1678-4685-GMB-2018-0097.
  • [23] PONCE-GONZÁLEZ J., SANCHIS-MOYSI J., GONZÁLEZ-HENRÍQUEZ J.J., ARTEAGA-ORTIZ R., CALBET J., DORADO C., A reliable unipedal stance test for the assessment of balance using a force platform, J. Sports Med. Phys. Fitness, 2014, 54 (1), 108–117, PMID: 24346036.
  • [24] POTTER P.J., KIRBY R.L., MACLEOD D.A., The effects of simulated knee-flexion contractures on standing balance, Am. J. Phys. Med. Rehabil., 1990, 69 (3), 144–147, DOI: 10.1097/00002060-199006000-00009.
  • [25] POULIOT-LAFORTE A, LEMAY M., RAUCH F. et al., Static Postural Control in Youth With Osteogenesis Imperfecta Type I, Archives of Physical Medicine and Rehabilitation, 2017, 98 (10), 1948–1954.
  • [26] RALSTON S.H., GASTON M.S., Management of Osteogenesis Imperfecta, Front. Endocrinol., 2020, 10, 924, DOI: 10.3389/fendo.2019.00924.
  • [27] ROSEMBERG D.L., GOIANO E.O., AKKARI M. et al., Effects of a telescopic intramedullary rod for treating patients with osteogenesis imperfecta of the femur, J. Child Orthop., 2018, 12 (1), 97–103, DOI: 10.1302/1863-2548.12.170009.
  • [28] SILLENCE D., Osteogenesis imperfecta: an expanding panorama of variants, Clin. Orthop., 1981, 159, 11–25.
  • [29] SUBRAMANIAN S., ANASTASOPOULOU C., VISWANATHAN V.K., Osteogenesis Imperfecta. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK536957/
  • [30] STIRLING J.R., ZAKYNTHINAKI M.S., Stability and the maintenance of balance following a perturbation from quiet stance, Chaos, 2004, 14 (4), 1012–1021, DOI:10.1063/1.1804972.
  • [31] VAN BRUSSEL M., TAKKEN T., CUNO S.P.M. et al., Physical Training in Children with Osteogenesis Imperfecta, The Journal of Pediatrics, 2008, 152 (1), 111–116, DOI: 10.1016/j.jpeds.2007.06.029.
  • [32] VAN DIJK F.S., SILLENCE D.O., Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment, American Journal of Medical Genetics, 2014, 164A (6), 1470–1481, DOI: 10.1002/ajmg.a.36545.
  • [33] VEILLEUX L.N., LEMAY M., POULIOT-LAFORTE A. et al., Muscle Anatomy and Dynamic Muscle Function in Osteogenesis Imperfecta Type I, The Journal of Clinical Endocrinology and Metabolism, 2014, 99 (2), E356-E362, DOI:10.1210/jc.2013-3209.
  • [34] VEILLEUX L.N., TREJO P., RAUCH F., Muscle abnormalities in osteogenesis imperfecta, Journal of Musculoskeletal and Neuronal Interactions, 2017, 17 (2), 1.
  • [35] YUAN Y., XU Y.F., FENG C. et al., Low muscle density in children with osteogenesis imperfecta using opportunistic low-dose chest CT: a case-control study, BMC Musculoskelet. Disord., 2024, (25), 478, DOI: 10.1186/s12891-024-07596-7.
  • [36] ZAKYNTHINAKI M.S., MADERA MILLA J., LÓPEZ DIAZ DE DURANA A., CORDENTE MARTÍNEZ C.A., RODRÍGUEZ ROMO G., SILLERO QUINTANA M., SAMPEDRO MOLINUEVO J., Rotated balance in humans due to repetitive rotational movement, Chaos, 2010, 20 (1), 013121, DOI: 10.1063/1.3308616.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b216f660-18e6-4bca-a352-abb5bb7ecdd6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.