PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low bod determination methods: the state-of-the-art

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biochemical Oxygen Demand (BOD) is an important factor used to measure water pollution. This article reviews recent developments of microbial biosensors with respect to their applications for low BOD estimation. Four main methods to measure BOD using a biosensor are described: microbial fuel cells, optical methods, oxygen electrode based methods and mediator-based methods. Each of them is based on different principles, thus a different approach is required to improve the limit of detection. A proper choice of microorganisms used in the biosensor construction and/or sample pre-treatment processes is also essential to improve the BOD lower detection limit.
Rocznik
Strony
629--637
Opis fizyczny
Bibliogr. 48 poz., tab.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Chemistry, Institute of Biotechnology, Department of Microbioanalytics, 00-664 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemistry, Institute of Biotechnology, Department of Microbioanalytics, 00-664 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemistry, Institute of Biotechnology, Department of Microbioanalytics, 00-664 Warsaw, Poland
Bibliografia
  • 1. Bourgeois W., Burgess J. E., Stuetz R. M., 2001. On-line monitoring of wastewater quality: a review. J Chem Technol Biotechnol, 76, 337-348. DOI: 10.1002/jctb.393.
  • 2. Brzózka Z., Wróblewski W., 1999. Chemical Sensors. Publishing Office of Warsaw University of Technology, Warsaw (In Polish).
  • 3. Brzózka Z., 2009. Microbioanalytics. Publishing Office of Warsaw University of Technology, Warsaw (In Polish).
  • 4. Chee G.-J., Nomura Y., Ikebukuro K., Karube I., 2000. Optical fiber biosensor for the determination of low biochemical oxygen demand. Biosens. Bioelectron., 15, 371–376. DOI: 10.1016/S0956-5663(00)00093-2.
  • 5. Chee G.-J., Nomura Y., Karube I., 1999. Biosensor for the estimation of low biochemical oxygen demand. Analytica Chimica Acta, 379, 185-191. DOI: 10.1016/S0003-2670(98)00680-1.
  • 6. Chee G.-J., Nomura Y., Ikebukuro K., Karube I., 1999. Development of highly sensitive BOD sensor and its evaluation using preozonation. Analytica Chimica Acta, 394, 65-71. DOI: 0.1016/S0003-2670(99)00289-5.
  • 7. Chee G.-J., Nomura Y., Ikebukuro K., Karube I., 2001. Biosensor for the evaluation of biochemical oxygen demand using photocatalytic pretreatment. Sensors and Actuators B, 80, 15-20. DOI: 10.1016/S09254005(01)00883-8.
  • 8. Chee G.-J., Nomura Y., Ikebukuro K., Karube I., 2005. Development of photocatalytic biosensor for the evaluation of biochemical oxygen demand. Biosens. Bioelectron., 21, 67-73. DOI: 10.1016/j.bios.2004.10.005.
  • 9. Chee G.-J., Nomura Y., Ikebukuro K., Karube I., 2007. Stopped-flow system with ozonizer for the estimation of low biochemical oxygen demand in environmental samples. Biosens. Bioelectron., 22, 3092–3098. DOI: 10.1016/j.bios.2007.01.014.
  • 10. Clark Jr L.C., Wolf R., Granger D., Taylor Z., 1953. Continuous recording of blood oxygen tensions by polarography. Journal of applied physiology, 6, 189–193.
  • 11. Cortón E., Chiappini S. A., Kormes D. J., Bonetto M. C., Sacco N., 2010. A new microbial biosensor for organic water pollution based on measurement of carbon dioxide production. Sens. Actuators B: Chem., 148, 103–109. DOI: 10.1016/j.snb.2010.04.039.
  • 12. Dhall P., Kumar A., Joshi A., Saxsena T. K., Manoharan A., Makhijani S. D., Kumar R., 2008. Quick and reliable estimation of BOD load of beverage industrial wastewater by developing BOD biosensor. Sens. Actuators B: Chem., 133, 478-483. DOI: 10.1016/j.snb.2008.03.010.
  • 13. Grzebyk M., Poźniak G., 2005. Microbial fuel cells (MFCs) with interpolymer cation exchange membranes. Sep. Purif. Technol., 41, 321–328. DOI: 10.1016/j.seppur.2004.04.009.
  • 14. Higgins S.R., Lau C., Atanassov P., Minteer S.D., Cooney M.J., 2011. Standardized characterization of a flow through microbial fuel cell. Electroanalysis, 23, 2174 – 2181. DOI: 10.1002/elan.201100249.
  • 15. ISO 5815-1:2003 Water quality - Determination of biochemical oxygen demand after n days (BODn) -- Part 1: Dilution and seeding method with allylthiourea addition.
  • 16. ISO 5815-2:2003 Water quality - Determination of biochemical oxygen demand after n days (BODn) -- Part 2: Method for undiluted samples.
  • 17. ISO 6107-1:2004 Water quality - Vocabulary.
  • 18. Ł. Górski, K.F. Trzebuniak, E. Malinowska, Chem. Process Eng., 2012, 33 (4), 629-637
  • 19. Jia J., Tang M., Chen X., Qi L., Dong S., 2003. Co-immobilized microbial biosensor for BOD estimation based on sol-gel derived composite material. Biosens. Bioelectron., 18, 1023-1029. DOI: 10.1016/S09565663(02)00225-7.
  • 20. Jiang Y., Xiao L.-L., Zhao L., Chen X., Wang X., Wong K.-Y., 2006. Optical biosensor for the determination of BOD in seawater. Talanta, 70, 97–103. DOI: 10.1016/j.talanta.2005.11.046.
  • 21. Kang K. H., Jang J. K., Pham T. H., Moon H., Chang I. S., Kim B. H., 2003. A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnology Letters, 25, 1357–1361. DOI: 10.1023/A:1024984521699.
  • 22. Karube I., Matsunaga T., Suzuki S., 1977. A new microbial electrode for BOD estimation. J. Solid-Phase Biochem., 2, 97-104.
  • 23. Kumlanghan A., Liu J., Thavarungkul P., Kanatharana P., Mattiasson B., 2007. Microbial fuel cell-based biosensor for fast analysis of biodegradable organic matter. Biosens. Bioelectron., 22, 2939–2944. DOI: 10.1016/j.bios.2006.12.014.
  • 24. Kumlanghan A., Kanatharana P., Asawatreratanakul P., Mattiasson B., Thavarungkul P., 2008. Microbial BOD sensor for monitoring treatment of wastewater from a rubber latex industry. Enzyme Microbial Technol., 42, 483–491. DOI: 10.1016/j.enzmictec.2008.01.012.
  • 25. Lin L., Xiao L.-L., Huang S., Zhao L., Cui J.-S., Wang X.-H., Chen X., 2006. Novel BOD optical fiber biosensor based on co-immobilized microorganisms in ormosils matrix. Biosens. Bioelectron., 21, 1703–1709. DOI: 10.1016/j.bios.2005.08.007.
  • 26. Liu C., Ma C., Yu D., Jia J., Liu L., Zhang B., Dong S., 2011. Immobilized multi-species based biosensor for rapid biochemical oxygen demand measurement. Biosens. Bioelectron., 26, 2074–2079. DOI: 10.1016/j.bios.2010.09.004.
  • 27. Miksch K., Sikora J., 2010. Wastewater Biotechnology. Wydawnictwo Naukowe PWN, Warsaw (In Polish).
  • 28. Miró M., Estela J. M., Cerda V., 2004. Application of flowing-stream techniques to water analysis Part II. General quality parameters and anionic compounds: halogenated, sulphur and metalloid species. Talanta, 62, 1-15. DOI: 10.1016/S0039-9140(03)00415-6.
  • 29. Moon H., Chang I.S., Jang J.K., Kim K.S., Lee J., Lovitt R.W., Kim B.H., 2005. On-line monitoring of low biochemical oxygen demand through continuous operation of a mediator-less microbial fuel cell. J. Microbiol. Biotechnol., 15, 192–196.
  • 30. Nagel B., Dellweg H., Gierasch L. M., 1992. Glossary for chemists of terms used in biotechnology. Pure & Appl. Chem., 64, 143-168. DOI: 10.1351/pac199264010143.
  • 31. Nakamura H., Kobayashi S., Hirata Y., Suzuki K., Mogi I., Karube I., 2007. A spectrophotometric biochemical oxygen demand determination method using 2,6-dichlorophenolindophenol as the redox color indicator and the eukaryote Saccharomyces cerevisiae. Analytical Biochem., 369, 168–174. DOI: 10.1016/j.ab.2007.06.040.
  • 32. Nakamura H., Mogi Y., Hattori H., Kita Y., Hattori D., Yoshimura A., Karube I., 2008. Absorption-based highly sensitive and reproducible biochemical oxygen demand measurement method for seawater using salt-tolerant yeast Saccharomyces cerevisiae ARIF KD-003. Analytica Chimica Acta, 620, 127–133. DOI: 10.1016/j.aca.2008.05.008.
  • 33. Oota S., Hatae Y., Amada I., Koya H., Kawakami M., 2010. Development of mediated BOD biosensor system of flow injection mode for shochu distillery wastewater. Biosens. Bioelectron., 26, 262–266 DOI: 10.1016/j.bios.2010.06.040.
  • 34. Pasco N., Baronian K., Jeffries C., Webber J., Hay J., 2004. MICREDOX®—development of a ferricyanidemediated rapid biochemical oxygen demand method using an immobilised Proteus vulgaris biocomponent. Biosens. Bioelectron., 20, 524-532. DOI: 10.1016/j.bios.2004.02.016.
  • 35. Pasco N.F., Weld R., Haym J.M., Gooneratne R., 2011. Development and applications of whole cell biosensors for ecotoxicity testing. Anal. Bioanal. Chem., 400, 931-945. DOI: 10.1007/s00216-011-4663-6.
  • 36. Penn M.R., Pauer J.J., Mihelcic J.R., 2004. Environmental and ecological chemistry-Vol. II- Biochemical oxygen demand. Encyclopedia of Life Support Systems (EOLSS), Eolss Publishers, Oxford.
  • 37. Ponomareva O. N., Arlyapov V. A., Alferov V. A., Reshetilov A. N., 2011. Microbial biosensors for detection of biological oxygen demand. App. Biochem. Microbiol., 47, 1-11. DOI: 10.1134/S0003683811010108.
  • 38. Rastogi S., Kumar A., Mehra N.K., Makhijani S.D., Manoharan A., Gangal V., Kumar R., 2003. Development and characterization of a novel immobilized microbial membrane for rapid determination of biochemical oxygen demand load in industrial waste-waters. Biosens. Bioelectron., 18, 23-29. DOI: 10.1016/S0956-5663(02)001082
  • 39. Renneberg T., Kwan R.C.H., Chan C., Kunze G., Renneberg R., 2004. A salt-tolerant yeast-based microbial sensor for 24 hour community wastewater monitoring in coastal regions. Microchim. Acta, 148, 235–240. DOI 10.1007/s00604-004-0266-7.
  • 40. Sakaguchi T., Kitagawa K., Ando T., Murakami Y., Morita Y., Yamamura A., Yokoyama K., Tamiya E., 2003. A rapid BOD sensing system using luminescent recombinants of Escherichia coli. Biosens. Bioelectron., 2, 115-121. DOI: 10.1016/S0956-5663(03)00170-2.
  • 41. Seo K. S., Choo K.H., Chang H.N., Park J. K., 2009. A flow injection analysis system with encapsulated highdensity Saccharomyces cerevisiae cells for rapid determination of biochemical oxygen demand. Appl. Microbiol. Biotechnol., 83, 217–223. DOI: 10.1007/s00253-008-1852-0.
  • 42. Severinghaus J.W., Freeman-Bradley A., 1958. Electrodes for blood pO2 and pCO2 determination,. J. Appl. Physiol., 13, 515–520.
  • 43. Severinghaus J.W., Astrup P.B., 1986. History of blood gas analysis. IV. Leland Clark's oxygen electrode. J. Clin. Monit., 2, 125-139.
  • 44. Staehelin J., Hoigné J., 1982. Decomposition of ozone in water: Rate of initiation by hydroxide ions and hydrogen peroxide. Environ. Sci. Technol., 16, 676–681. DOI: 10.1021/es00104a009.
  • 45. Suriyawattanakul L., Surareungchai W., Sritongkam P., Tanticharoen M., Kirtikara K., 2002. The use of coimmobilization of Trichosporon cutaneum and Bacillus licheniformis for a BOD sensor. Appl. Microbiol. Biotechnol., 59, 40-44. DOI: 10.1007/s00253-002-0980-1.
  • 46. Thévenot D.R., Toth K., Durst R.A., Wilson G.S., 2001. Electrochemical biosensors: recommended definitions and classification. Biosens. Bioelectron., 16, 121-131. DOI: 10.1016/S0956-5663(01)00115-4.
  • 47. Trosok S.P., Driscoll B.T., Luong J.H.T., 2001. Mediated microbial biosensor using a novel yeast strain for wastewater BOD measurement. Appl. Microbiol. Biotechnol., 56, 550–554. DOI: 10.1007/s002530100674.
  • 48. Xin L., Wang X., Guo G., Wang X., Chen X., 2007. An optical biosensing film for biochemical oxygen demand determination in seawater with an automatic flow sampling system. Meas. Sci. Technol., 18, 2878–2884. DOI: 10.1088/0957-0233/18/9/017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b20dfad3-9821-4e34-a801-e7fdc8d326ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.