Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper concerns numerical modelling of the Yb:YAG laser beam welding process. Numerical algorithms are developed for the analysis of thermal phenomena in a laser welded joint taking into account the motion of the liquid material in the welding pool. The model describing the laser beam heat source power distribution is developed on the basis of the kriging method. The heat source model uses the real laser beam profile obtained from experimental measurements of the beam emitted from a Trumpf D70 laser head performed on UFF100 analyzer. On the basis of developed numerical algorithms computer simulations of a Yb:YAG laser beam welding are carried out used to analyze the influence of the thermal load model on the shape and size of the weld.
Rocznik
Tom
Strony
175--186
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
- Czestochowa University of Technology, Poland
autor
- Czestochowa University of Technology, Poland
autor
- Czestochowa University of Technology, Poland
autor
- Czestochowa University of Technology, Poland
autor
- Welding Institute, Poland
autor
- I.I. Polzunov Altai State Technical University, Russian Federation
autor
- I.I. Polzunov Altai State Technical University, Russian Federation
Bibliografia
- [1] Dawes C., Laser Welding, Abington Publishing, New York 1992.
- [2] Han L., Liou F.W., Numerical investigation of the influence of laser beam mode on melt pool, Int. J. Heat Mass Tran. 2004, 47, 4385-4402.
- [3] Pilarczyk J., Banasik M., Dworak J., Stano S., Technological applications of laser beam welding and cutting at the Instytut Spawalnictwa, Przegląd Spawalnictwa 2006, 5-6, 6-10.
- [4] De A., Debroy T., Reliable calculations of heat and fluid flow during conduction mode laser welding through optimization of uncertain parameters, Welding Journal 2005, 84, 101-112.
- [5] Torkamany M.J., Sabbaghzadeh J., Hamedi M.J., Effect of laser welding mode on the microstructure and mechanical performance of dissimilar laser spot welds between low carbon and austenitic stainless steels, Materials & Design 2012, 34, 666-672.
- [6] Piekarska W., Kubiak M., Modeling of thermal phenomena in single laser beam and laser-arc hybrid welding processes using projection method, Apel. Math. Model. 2013, 37, 2051-2062.
- [7] Rai R., Kelly S.M., Martukanitz R.P., Debroy T.A., Convective heat-transfer model for partial and full penetration keyhole mode laser welding of a structural steel, Metall. Mater. Trans. A 2008, 39A, 98-112.
- [8] Song X., Li B., Guo Z., Wang S., Cai D., Wen J., Influences of pump beam distribution on thermal lensing spherical aberration in an LD end-pumped Nd:YAG laser, Opt. Commun. 2009, 282, 4779-4783.
- [9] Kim H.S., Yang J.M., Dependence of the temperature of a Yb:YAG disk laser crystal on the pump laser’s spot size and the disk’s thickness, J. Korean Phys. Soc. 2009, 55 (4), 1425--1429.
- [10] Yilbas B.S., Laser heating process and experimental validation, International Int. J. Heat Mass Tran. 1997, 40(5), 1131-1143.
- [11] Jana S., Ray S., Durst F., A numerical method to compute solidification and melting processes, Appl. Math. Model. 2007, 31, 93-119.
- [12] Taylor G.A., Hughes M., Strusevich N., Pericleous K., Finite volume methods applied to the computational modelling of welding phenomena, Appl. Math. Model. 2002, 26, 309-320.
- [13] Oliver M.A., Webster R., Kriging: a method of interpolation for geographical information system, International Journal of Geographical Information Systems 1990, 4(3), 313-332.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b206a6d5-2bd4-4408-8f54-b2d7f8e5d157