PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anaerobic Digestion of Wheat Straw Pretreated with Soaking in Water and Alkali Medium

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of the alkaline pretreatment of wheat straw with use 0.05M solution of NaOH by 22 hours at 25 °C temperature on the effectiveness of anaerobic digestion under mesophilic condition was the subject of this study. The water soaked straw was used as a control. The results showed that alkaline pretreatment improved the solubility of the straw biomass, increasing dissolved COD and concentration of VFA in the feedstock of 10% and 21%, respectively, compared to the water soaked samples. Consequently, the cumulative biogas yield was enhanced by 21.5%, reaching 412.1 mL gVS-1 for the pretreated biomass. The digestates were similar in terms of TS and VS, but it significantly differed in terms of phenols concentration, the content of which was considerably higher both in the feedstock as also as in digestate containing alkaline pretreated straw. Initial concentration of phenols in the feedstock of 27 mg L-1 did not block the anaerobic digestion, although its inhibiting effect is forecasted. It was concluded that soaking the straw at low loading of NaOH (4% of raw mass (w/w)) under ambient conditions can efficiently improve its usability for biogas production.
Rocznik
Strony
246--254
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Lublin University of Technology, Faculty of Environmental Engineering, Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
  • 1. Barakat A., Monlau F., Steyer J.-P., Carrere H. 2012. Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production. Bioresource Technology, 104, 90–99.
  • 2. Borja R., Alba J., Banks C.J. 1997. Impact of the main phenolic compounds of olive mill wastewater (OMW) on the kinetics of acetoclastic methanogenesis. Process Biochemistry, 32(2), 121–133.
  • 3. Chandra R., Takeuchi H., Hasegawa T., Kumar R. 2012. Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy, 43, 273–282.
  • 4. Corredor D.Y., Sun X.S., Salazar J.M., Hohn K.L., Wang D. 2008. Enzymatic hydrolysis of soybean hulls using dilute acid and modified steam-explosion pretreatments. Journal of Biobased Materials and Bioenergy, 2, 43–50.
  • 5. Fedorak P.M., Hrudey S.E. 1984. The effects of phenol and some alkyl phenolics on batch anaerobic methanogenesis. Water Research, 18(3), 361–367.
  • 6. Galbe M., Sassner P., Wingren A., Zacchi G. 2007. Process engineering economics of bioethanol production. Advances in Biochemical Engineering/Biotechnology, 108, 303–327.
  • 7. Kim D. 2018. Physico-chemical conversion of lignocellulose: inhibitor effects and detoxification strategies: A mini review. Molecules, 23(2), 309.
  • 8. Krishania M., Vijay V.K. 2012. Comparison of various pretreatments of wheat straw for biomethanation, World Congress on Sustainable Technologies (WCST-2012), London, UK.
  • 9. Krishania M., Vijay V.K., Chandra R. 2013. Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay. Energy, 57, 359–367.
  • 10. Kumar P., Barrett D.M., Delwiche M.J., Stroeve P. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research, 48, 3713–3729.
  • 11. Lu H., Gui Y., Zheng L., Liu X. 2013. Morphological, crystalline, thermal and physico-chemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Research International, 50, 121–128.
  • 12. Mancini G., Papirio S., Lens P.N.L., Esposito G. 2018. Increased biogas production from wheat straw by chemical pretreatments. Renewable Energy, 119, 608–614.
  • 13. Massanet-Nicolau J., Dinsdale R., Guwy A., Shipley G. 2013. Use of real time gas production data for more accurate comparison of continuous single-stage and two-stage fermentation. Bioresource Technology, 129, 561–567.
  • 14. Penaud V., Delgenes J.P., Moletta R. 1999. Thermo-chemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzyme and Microbial Technology, 25(3), 258–263.
  • 15. Remli N.A.M., Shah U.K.M., Mohamad R., Abd-Aziz S. 2013. Effects of chemical and thermal pretreatments on the enzymatic saccharification of rice straw for sugars production. Bioresources, 9(1), 510–522.
  • 16. Saha B.C., Iten L.B., Cotta M.A., Wu Y.V. 2005. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochemistry, 40(12), 3693–3700.
  • 17. SRWE, Statistical Review of World Energy, 2019.
  • 18. Sun Y., Cheng J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83, 1–11.
  • 19. Taherdanak M., Zilouei H. 2014. Improving biogas production from wheat plant using alkaline pretreatment. Fuel, 115, 714–719.
  • 20. Talebnia F., Karakashev D., Angelidaki I. 2010. Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, 101, 4744–4753.
  • 21. Xie Y., Hu Q., Feng G., Jiang X., Hu J., He M., Hu G., Zhao S., Liang Y., Ruan Z., Peng N. 2018. Biodetoxification of phenolic inhibitors from lignocellulose pretreatment using Kurthia huakuii LAM0618T and subsequent lactic acid fermentation. Molecules, 23(10), 2626.
  • 22. Yang D., Pang Y., Yuan H., Chen S., Ma J., Yu L., Li X. 2014. Enhancing biogas production from anaerobically digested wheat straw through ammonia pretreatment. Chinese Journal of Chemical Engineering, 22(5), 576–582.
  • 23. Zhang M., Pienkos P.T. 2009. Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose, 16(4), 743–762.
  • 24. Zhang Y.H.P., Lynd L.R. 2004. Towards an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and Bioengineering, 88 (7), 797–824.
  • 25. Zhu J., Wan C., Li Y. 2010. Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresource Technology, 101, 7523–7528.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2044887-8ddf-4dd7-afe4-7d0145a88323
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.