PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On a few reliability issues in telecommunication networks

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper proposes a short survey on a few issues currently addressed in telecommunication networks. We show on an example that the k-terminal reliability of recursive families of graphs can also be expressed in terms of products of matrices, leading to a simple asymptotic result. The uncertainty on equipment failure rates, which are not always easy to assess, and the possible occurrence of common-cause failures combine to possibly make the overall connection availability and failure frequency different from their expected values assuming independent failures. We finally discuss a source of impairment in long-haul optical networks, and other current issues where improvements would lead to a reduction of costs and to a better quality of service.
Rocznik
Strony
239--246
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
autor
  • Orange Labs, Issy-les-Moulineaux, France
Bibliografia
  • [1] Abraham, J. A. (1979). An improved algorithm for network reliability. IEEE Transactions on Reliability 28 (1), 58-61.
  • [2] Atwood, C. L. (1986). The binomial failure rate common cause model. Technometrics 28 (2), 139-148.
  • [3] Balan, A. O. & Traldi, L. (2003). Preprocessing minpaths for sum of disjoint products, IEEE Transactions on Reliability 52 (3), 289-295.
  • [4] Ball, M. O. , Colbourn, C. J. & Scott Provan, J. (1995). Network reliability, in Handbooks in operations research and management science, volume 7: Network Models, editors M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, Elsevier, Amsterdam, pp. 673-762 (with over 400 references).
  • [5] Beichelt, F. & Spross, L. (1989). Bounds on the reliability of binary coherent systems. IEEE Trans. Reliability 38, 425-427.
  • [6] Bulka D. & Dugan, J. B. (1994). Network s-t reliability bounds using a 2-dimensional reliability polynomial. IEEE Transactions on Reliability 43 (1), 39-45.
  • [7] Coit, D. W. (1997). System-reliability confidence-intervals for complex-systems with estimated component-reliability. IEEE Transactions on Reliability 46 (4) (1997) 487-493.
  • [8] Coit, D. W., Jin, T. & Wattanapongsakorn, N. (2004). System optimization with komponent reliability estimation uncertainty: a multi-criteria approach, IEEE Transactions on Reliability 53 (3), 369-380.
  • [9] Colbourn, C. J. (1987). The combinatorics of network reliability. Oxford University Press, Oxford.
  • [10] Dotson, W. P. & Gobien, J. O. (1979). A new analysis technique for probabilistic graphs. IEEE Transactions on Circuits and Systems 26 (10), 855-865.
  • [11] Fishman, G. S. (1986). A comparison of four Monte Carlo methods for estimating the probability of s-t connectedness. IEEE Transactions on Reliability 35 (2), 145-155.
  • [12] Gadani, J. P. (1981). System effectiveness evaluation using star and delta transformations. IEEE Transactions on Reliability 30 (1), 43-47.
  • [13] Gordon, J. P., & Kogelnik, H. (2000). PMD fundamentals: Polarization mode dispersion in optical fibers. PNAS 97 (9), 4541-4550.
  • [14] Hayashi, M. (1991). System failure-frequency analysis using a differential operator. IEEE Transactions on Reliability 40 (5), 601-609, 614.
  • [15] Henley, E. J. & Kumamoto, H. (1991). Probabilistic Risk Assessment: Reliability Engineering, Design and Analysis. IEEE Press, Piscataway, chapter 10.
  • [16] Jin, T. & Coit, D. W. (2001). Variance of system-reliability estimates with arbitrarily repeated components. IEEE Transactions on Reliability 50 (4), 409-413.
  • [17] Karger, D. R. (2001). A randomized Fuldy polynomial time approximation scheme for the all terminal reliability problem. SIAM Review 43 (3), 499-522.
  • [18] Kevin Wood, R. (1985). A factoring algorithm using polygon-to-chain reductions for computing K-terminal network reliability. Networks 15, 173-190.
  • [19] H. Kogelnik, H., Nelson, L. E. & Jonson, R. M. (2002). Polarization-Mode Dispersion, in Optical Fiber Telecommunications IV B, editors I. P. Kaminow & T. Li, Academic Press, San Diego, 725-861.
  • [20] Kołowrocki, K. (2004). Reliability of Large Systems. Elsevier, Amsterdam-Boston-Heidelberg-London-New York-Oxford-Paris-San Diego-San Francisco-Singapore-Sydney-Tokyo.
  • [21] Kuo, S., Lu, S. & Yeh, F. (1999). Determining terminal pair reliability based on edge expansion diagrams using OBDD. IEEE Transactions on Reliability 48 (3), 234-246.
  • [22] Kuo, W. & Zuo, M. J. (2003). Optimal Reliability Modeling. John Wiley and Sons, Inc., Hoboken.
  • [23] Moore, E. F. & Shannon, C. E. (1956). Reliable circuits using less reliable relays. J. Franklin Institute, 262 (September), 191-208; 262 (October), 281-297.
  • [24] Mosleh, A., Fleming, K. N., Parry, G. W., Paula, H. M., Worledge, D. H. & Rasmuson, D. M. (1988). Procedures for treating common causa failures in safety and reliability studies: procedural framework and examples. Technical Report NUREG/CR-4780, U.S. Nuclear Regulatory Commission.
  • [25] Rai, S., Veeraraghavan, M. & Trivedi, K. S. (1995). A survey of efficient reliability computation using disjoint products approach. Networks 25, 147-163, and references therein.
  • [26] Rausand, M. & Høyland, A. (2004). System Reliability Theory, 2nd edition. John Wiley and Sons, Inc., Hoboken.
  • [27] Rauzy, A. (2003). A new methodology to handle Boolean models with loops. IEEE Transactions on Reliability 52 (1), 96-105.
  • [28] Rauzy, A., Châtelet, E., Dutuit, Y. & Bérenguer, C. (2003). A practical comparison of methods to assess sum-of-products. Reliability Engineering and System Safety 79, 33-42.
  • [29] Shi, D. H. (1981). General formulas for calculating the steady-state frequency of system failure. IEEE Transactions on Reliability R-30 (5), 444-447.
  • [30] Singh, C. & Billinton, R. A new method to determine the failure-frequency of a complex system. IEEE Transactions on Reliability R-23 (4), 231-234.
  • [31] Tanguy, C. (2007). What is the probability of connecting two points? J. Phys. A: Math. Theor. 40, 14099-14116.
  • [32] Tanguy, C. (2008). Relative uncertainty of availability and failure frequency for a few large, recursive networks. Proceedings of the 14th ISSAT International Conference on Reliability and Quality in Design, Orlando, USA, August 7-9, 2008, editors H. Pham and T. Nagakawa, 213-218.
  • [33] Tanguy, C. (2009). Mean Time To Failure for periodic failure rate. Proceedings of the Third Summer Safety and Reliability Seminars, Gdansk-Sopot, Poland, July 20-25, 2009, editors K. Kołowrocki, J. Soszyńska, and E. Zio, 347-353.
  • [34] Tanguy, C. (2009). A solvable common-cause failure model for coherent system. Proceedings of the ESREL 2009 Conference, Prague, Czech Republic, September 7-10, 2009, editors R. Briš, C. Guedes Soares, and S. Martorell, 1541-1547.
  • [35] To, M. & Neusy, P. (1994). Unavailability analysis of long-haul networks. IEEE Journal on Selected Area in Communications 12 (1), 100-109.
  • [36] Vesely, W. E. (1977). Estimating common causa failure probabilities in reliability and risk analyses: Marshall-Olkin specialization. Nuclear Systems Reliability Engineering and Risk Assessment, editors J. B. Fussell and G. R. Burdick, SIAM, Philadelphia, 314-341.
  • [37] Yeh, F. M., Lu, S. K. & Kuo, S. Y. (2002). OBDD-based evaluation of k-terminal Network reliability. IEEE Transactions on Reliability 51 (4), 443-451.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1f73bf6-e7c0-49ea-9486-f4e24987c09e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.