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1. Introduction 

Network availability and reliability have long been 
a practical issue in telecommunication networks. 
Quality of Service (QoS) requirements imply high 
availabilities A, but also a good knowledge of the 
failure frequency ν of point-to-point connections, 
when the system can be repaired. Because of the 
operational cost, most networks have usually a 
meshed architecture. Not surprisingly, the study of 
network reliability has led to a huge body of 
literature, starting with the work of Moore and 
Shannon [23], and including textbooks and surveys 
[4], [9], [15], [22], [26].  
The sheer number of possible system states clearly 
precludes the use of an enumeration of states 
strategy for realistic networks, and shows that the 
final expression may be extremely cumbersome. 
Consequently, most studies have considered graphs 
with perfect nodes and edges of identical reliability 
p. It was shown early on (see for instance the 
discussion in [9]) that the calculation of k-terminal 
reliability is #P-hard in the general case, even with 
the following simplifying and restricting 
assumptions that (i) the graph is planar (ii) all nodes 
are perfectly reliable (iii) all edges have the same 
reliability p. All reliabilities are then expressed as a 
polynomial in p, called the reliability polynomial. 
The difficulty of the problem has stimulated many 
approaches: partitioning techniques, sum of disjoint 
products [1], [3], [10], [25], [28], graph 

simplifications (series-parallel reductions [23], 
delta-wye transformations [12], factoring [18]), 
Monte-Carlo simulations [11], [17], and ordered 
binary decision diagram (OBDD) algorithms [24], 
[27], [37]. 
In recent years, the tremendous growth of Internet 
traffic has called for a better evaluation of the 
reliability of connections in optical networks. This, 
of course, strongly depends on the connection under 
consideration. Actual failure rates and maintenance 
data show that a proper evaluation of two-terminal 
reliabilities must put node and edge equipments on 
an equal footing, i.e., both edge (fiber links, optical 
amplifiers) and node (optical cross-connects, 
routers) failures must be taken into account.  
It has been recently shown that the two-terminal 
reliability of recursive networks may be written as a 
product of matrices [31], where each edge and node 
reliability is arbitrary. The solution for generic 
architectures can be applied to particular cases. One 
such example is the simplified Arpanet network, 
which is a particular instance of the solvable 
Beichelt-Spross configuration [5], [32], as shown in 
Figure 1. From the exact, analytical expression of 
the reliability, many performance measures – the 
sensitivity, the failure frequency, etc. – can also be 
derived quite simply from partial derivatives [14], 
[29], [30]. 
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Abstract 

The paper proposes a short survey on a few issues currently addressed in telecommunication networks. We 
show on an example that the k-terminal reliability of recursive families of graphs can also be expressed in 
terms of products of matrices, leading to a simple asymptotic result. The uncertainty on equipment failure 
rates, which are not always easy to assess, and the possible occurrence of common-cause failures combine to 
possibly make the overall connection availability and failure frequency different from their expected values 
assuming independent failures. We finally discuss a source of impairment in long-haul optical networks, and 
other current issues where improvements would lead to a reduction of costs and to a better quality of service.  
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Figure 1. Translation of the simplified Arpanet 
network (top) in terms of a Beichelt-Spross ladder 

(bottom). Dotted links are absent: their availabilities 
should be set to zero. 

 
Because the most general expressions for extended 
networks are quite large, it is often assumed that 
many elements are identical, or even that they never 
fail. While this is an oversimplification we must be 
careful about, it may give some insight to the 
general behaviour of large systems, which are of 
considerable interest [20]. For instance, if each link 
of the simplified Arpanet network has an 
availability p, we can show that the associated 
reliability polynomial is given by  
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this expression will be used in various following 
sections. 
 
This paper is organized as follows. We first look at 
the specificity of k-terminal reliability for a simple, 
recursive architecture by considering the 4-terminal 
reliability of its end terminals. The exact solution 
shows that in the large system limit, the main 
conclusion can be obtained from the simpler two-
terminal reliability. We then turn to the thorny issue 
of uncertainty in reliability calculations, which can 
originate with the lack of accuracy of field data and 
by the possible existence of common-cause failures. 
While this topic has been the subject of many 
studies in various fields, with major breakthroughs 
coming from the nuclear reactor industry [24], 
among other disciplines, the systems that have been 

dealt with are of moderate size. We finally 
enumerate several topics of current interest – the 
influence of optical impairments in long-haul fiber 
links, data collection of repair times, and expected 
lifetimes of equipments undergoing variable load – 
and briefly sketch approaches to tackle the issues.   
 
2. Three- and four-terminal reliability for a 
simple architecture 

We mentioned in the introduction that for recursive 
families of graphs, the two- and all-terminal 
reliabilities may be expressed by products of 
matrices. It is therefore reasonable to assume that it 
should also be the case for the k-terminal 
reliabilities. But then, how does the size of the 
matrix vary with k? What happens for large 
systems?  
 
2.1. Simple ladder architecture  

We shall consider here a simple network 
configuration that describes typical long-haul 
optical networks [35]. We have represented in 
Figure 2 a typical point-to-point connection, which 
corresponds to primary plus backup path between 
the source S and the destination T, with several 
links between intermediate nodes, so as to improve 
the reliability of the whole system. This 
configuration has been solved recently for Rel2 
[31]. 

 

 
 

Figure 2. Two-terminal connection for a simple 
ladder architecture, with source S, and destination 

T. 
 

 
Figure 3. Close-up on the ith building block of the 
simple ladder network: ai, bi, and ci are the edges' 
availabilities, Si and Ti the nodes' availabilities. 

 
Let us briefly review the main results of [31]. To 
keep the problem as general as possible, we 
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attribute to each link and node of the system a 
specific availability, as shown in Figure 3. 
The two-terminal reliability Rel2(S0,Tn) can be 
written as a product of 3x3 matrices, while the all-
terminal reliability is given by 2x2 matrices. When 
the edge and node availabilities are p and ρ 
respectively as in [6], the generating function G2(z) 
defined by  
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A partial fraction decomposition of G2(z) leads 
therefore to an expression of the form 
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because one of the eigenvalues is larger than the 
other two (see Figures 5 and Figure 6). The 
asymptotic large-size limit is therefore controlled 
by ζ+. 
 
2.2. 3- and 4-terminal reliability  

We now wish to address a different situation, in 
which we are interested in the connection 
probability of a few sites (the customers) located at 
the outskirts of the network. These terminals will be 
S0, T0, Sn, Tn (see Figure 4).   
 

 
 

Figure 4. Four-terminal connection for the same 
architecture as in Fig. 3. S0, T0, Sn, and Tn must be 

connected. 
 
The pivotal decomposition – taking possibly 
imperfect nodes into account and already used for 
the derivation of Rel2(S0,Tn) – is helpful again when 
calculating Rel4(S0,T0, Sn,Tn). However, it is easy to 

see that this decomposition gives rise to terms 
similar to Rel3(S0,T0, Sn-1), Rel3(S0,T0, Tn-1), and 
Rel4(S0,T0, Sn-1,Tn-1). If we want to establish a 
proper recursion, we also have to find relationships 
between the two Rel3(.) above. This can be done 
smoothly because these quantities constitute a 
'closed' system. The knowledge of Rel3(S0,T0, S1), 
Rel3(S0,T0, T1) and Rel4(S0,T0, S1,T1) gives the 
necessary initial conditions of the recursion. 
Finally, the 3-terminal reliabilities can be obtained 
by of product of 4x4 matrices, whereas Rel4(S0,T0, 
Sn,Tn) requires 6x6 matrices. Let us recall that such 
expressions are valid for arbitrary values of the 
edge and node reliabilities. 
 
As in the case of Rel2(S0,Tn), we may wonder about 
the large-n dependence of the Rel3(.) and Rel4(.). 
Here again, we can compute the generating 
functions 
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where ( ) 22

0 1 ρξ pp −= . We note the presence of 

ζ+ and  ζ− . Figures 5 and Figure 6 display the 
variations of ζ+, ζ−, ζ0, and ξ0 for perfect and 
imperfect nodes.  
  

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p

�0

�

�

�0

��1

 
Figure 5. Variation with p of the different 
eigenvalues ζ+, ζ−, ζ0, and ξ0    appearing in the 4-
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terminal reliability Rel4(S0,T0, Sn,Tn), for perfect 
nodes.  
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Figure 6. Same as Figure 5, with ρ=0.9. 
 
The main result is that when the network is large, 
i.e., n >> 1, all two-, three- and four-terminal 
reliabilities essentially behave as power-laws, with 
the same scaling factor ζ+. The reliabilities are 
given by the probability of connecting the mot 
distant end-terminals. 
 

3. Uncertainty on the availability and the 
failure frequency 

An important question is: can we trust calculations 
for a connection, given the uncertainty on the 
probabilities that each network's component is 
properly functioning? This issue has already been 
considered in the literature [7], [8], [16], [32]. We 
will consider here two sources of uncertainty, and 
see their consequences on the two-terminal 
reliability of the Arpanet network of Figure 1. 
 
3.1. Uncertainty on the data 

If the availability p of each element is not perfectly 
known – the failure rate is not so easy to determine 
accurately – this must have an influence on the total 
availability A of a connection. Telecommunication 
networks are built with quite reliable components 
so that it is reasonable to assume that the 
uncertainty on p is a fraction of the unavailability 
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Provided that q is small, the uncertainty on A, ∆A, is 
approximately given by  
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In the case of the Arpanet architecture, we find in 
the q → 0 limit 
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This means that the availability calculation is 
meaningful only when 12 γ q2 << 1. If q is about 10-
3, this condition will be fulfilled. A general 
treatment for arbitrary recursive architectures has 
been given in [32]. Another way to present the 
result is to consider the relative uncertainty of the 
unavailability U = 1 – A. It reads 
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This should urge caution make statement about the 
accuracy of connection unavailabilities.   
 
3.2. Influence of common-cause failures 

In most network reliability studies, equipment 
failures are assumed to be independent. However, 
we cannot always discard the possibility of 
common-cause failures. Admittedly, the 
corresponding failure rates are even more difficult 
to assess than their single failure counterparts. The 
purpose of this subsection is to show how the true 
availability of a connection differs from that 
computed assuming independent failures and using 
the observed availability of each component, 
defined as <p>. 
The general expressions for the true availability 
have been given in [34]. We consider in the 
following the Arpanet configuration, with perfect 
nodes and identical edges, the number of which is 
N. We call λ(i) the failure rate of an event affecting 
jointly i elements, and assume a uniform repair rate 
µ for all elements of the network. It is then easy to 
show that the average availability <p> of an 
element is  

   
1λµ

µ
)

+
=>< p  

and more generally that 
 

   ∏
= +

=><
m

k k

m

k

k
p

1 λµ
µ
)  



SSARS 2010   
Summer Safety and Reliability Seminars, June 20-26, 2010, Gdańsk-Sopot, Poland 

 

 243 

   ∑
=
















 −
−







=

n

i

i
k i

kN

i

N

1

)(λλ
)

 

 
Because of the λ(i) 's (i ≥ 2), we cannot write <pm> 
= <p>m anymore. For a reliability polynomial R(p) 
= Σm am pm , we have 
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As shown in the above equations, the final result 
depends on the λ(i) 's. A first result for λ(1) = λ, λ(N) 

= Λ, and all other coefficients set to zero (the β-
factor model where β = λ/(λ+Λ)) is that the true 
availability may be either greater or smaller than 
R(<p>), depending on the architecture and size of 
the network, along with the unavailability of each 
of its elements [34]. 
We present here what happens for the Arpanet 
configuration if we consider, instead of the β-factor 
model, another well-known model of common-
cause failures, namely the binomial failure rate 
model [2, [36]. Let us set  λ(i) = λ ξ(i-1); this leads 
to 
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We can therefore define the effective beta-factor by 
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which is nothing but the ratio of all the non-single 
failure rates over the effective observed failure rate. 
Figures 7 shows the behavior of the true availability 
for the Arpanet configuration, for both models (the 
independent-failures limit is obtained for β = 0 or 

β~  = 0). We observe a substantial variation of both 
the availability and the failure frequency as these 
parameters increase. While the general behavior of 
the availability is approximately the same for both 
models (see Figure 7), the slope at the origin is 
slightly positive for the β-factor model, <R>beta, 
while it is negative for the combinatorial one, 
<R>combi. The true availability of a connection may 

be either greater or smaller than the simple 
'independent' calculation of R(<p>) with the 
assumption <p> = 0.9. In telecommunication 
networks, we expect the amount of common-cause 
failures to be rather small. Knowing whether we 
underestimate the true unavailability is important.  
If we turn to the true failure frequency <ν> (see 
Figure 8), we see that the two models lead to 
qualitatively different behaviors. It is worthwhile 

noting that the vicinity of β~ → 1 may lead to 

strong variations for both <R> and <ν>. 
Furthermore, for <p> = 0.8, the variations of <R> 
are quite different. A detailed study of the two 
models and their consequences will be presented 
elsewhere. Caution is therefore recommended even 
when only trying to predict the qualitative change 
brought by taking common-cause failures into 
account. 
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Figure 7. True availability of the two-terminal 
connection S-T for the Arpanet architecture given 

in Figure 1, for two models of common-cause 
failures. The observed availability of each link is 

<p> = 0.9. 
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Figure 8. True failure frequency of the two-terminal 

connection for the Arpanet architecture given in 
Figure 1, for both models of common-cause 

failures. 
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4. Further issues in the quality of 
connections in optical networks  

Quality of Service (QoS) is a crucial issue for 
telecommunication operators. The unavailability of 
connections in optical networks is therefore an 
important performance measure, which must be 
determined. This measure encompasses various 
topics, of which we mention a few in the following. 
 
4.1. Polarization mode dispersion in optical 
transmission 

In network reliability studies, hardware failures are 
usually considered (servers may be down, fiber 
links accidentally cut, etc.). The overall availability 
of a connection is then calculated – using 
probabilistic methods – as a function of all the 
availabilities of the equipments likely to be used 
between its source and its destination. The 
contribution of software failures is also assessed.  
These failures are, however, not the only causes of 
impairment for optical connections. Several 
physical phenomena occurring in the propagation of 
light pulses in fibers, such as polarization mode 
dispersion (PMD), crossed-phase modulation, and 
other nonlinear effects, may lead to some "blurring" 
of the signal, making sometimes the '0' and '1' of the 
transferred data unrecognizable. These phenomena 
should play an even larger role in the next few 
years, all the more so as higher transmission data 
rates, 40 and 100 Gbps, are now required in order to 
satisfy an ever increasing traffic demand. 
We focus here on the influence of one of these 
phenomena, namely the polarization mode 
dispersion, on a connection's unavailability. 
Amongst the main characteristics of PMD relevant 
to our objective, its stochastic nature is the trickiest. 
The delay τ between the two polarization modes 
leads to a broadening of the light pulse that carries 
the digital information [13], [19] (see Figure 9). 
 

 
 

Figure 9. Different propagation velocities for 
polarization modes leads to a smearing out of the 

optical signal. 
 
In the simplest statistical description of the PMD, 
the delay τ obeys a Maxwellian distribution given 
by 
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where the mean differential group delay (DGD) <τ> 
is proportional to the square root of the length L of 
the fiber link (as in a random walk). If at a given 
time t, τ is larger than a value depending on the data 
transfer rate and engineering constraints, the optical 
signal will be too blurred to be decoded; this leads 
to a de facto unavailability of the otherwise 
perfectly operational fiber link (note that maybe a 
few seconds later, τ may be small enough again for 
the optical transmission to be fully functional again, 
without any repair being made). One current goal is 
therefore to evaluate the contribution of the PMD to 
the total unavailability of an optical connection.  
 
4.2. Repair time distribution and 
maintenance policy 

The availability of each network element is 
obviously a value on which a connection's quality 
of service relies heavily. This parameter depends of 
course on the failure rate of the element, but also on 
the equivalent repair rate. The determination of a 
realistic description of the repair time distribution is 
something telecommunication companies cannot 
afford to disregard. To attain such a goal, data 
collection is a crucial issue. It may be possible to 
use simple laws: while the exponential distribution 
is well-known for not being the best of candidates, 
the lognormal or the inverse Gaussian distribution 
are usually among the favored ones [26]. Still, the 
difficulty – as in other fields – is to get enough field 
data to make the choice of a given model 
sufficiently meaningful. Another problem is the 
input of approximate or rounded off values, which 
somehow 'pollute' the whole data set. Once a repair-
time distribution is adopted, it can be used in the 
proper assessment of the weak parts of a network 
and in the optimization of resources, such as the 
scheduling of tasks for repair people.  
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Figure 10. One week-worth of unprocessed repair 

times of a network equipment. 
 
4.2. Expected lifetime of 'real' equipments 

In many deployed telecommunication networks, 
equipments undergo variable loads. Figure 11 
represents the typical weekly energy consumption 
of a network element. This should translate to a 
varying failure rate, and therefore to a mean time 
before failure that cannot be calculated assumed a 
constant failure rate. A first simple approach has 
been proposed in [33]. Refinements could be 
helpful too. 
 
 

 
 
Figure 11. Weekly variation of energy consumption  

by a network equipment. The influence of week-
ends is clearly observable. 

 
5. Conclusion 

We have tried to give a short overview on several 
issues that are currently of crucial importance in 
optical networks, and for which various reliability 
and system safety techniques can be usefully and 
successfully applied.  
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