PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of the bending and out-of-plane loading effects on formability response of the steel sheets

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Failure in sheet metal forming can occur by necking, fracture or wrinkling. By using a forming limit diagram (FLD) as a powerful tool to prevent sheets metal failures in the forming process, provides parameters controlling throughout forming. There are different developed methods for predicting FLDs, which estimate sheet metal forming strains limits. Assessment of FLD estimation reveals that there is a dependency between the effect of several factors containing normal stress, shear stress, sheet thickness, mechanical properties, metallurgical properties, yield function, strain path, and bending with formability. In this research, the effects of bending via two finite element models are investigated. In the first method, the out-of-plane deformation is applied by increasing punch displacement to study the effects of bending. In the second method, the effect of bending is investigated via changing punch diameter (25, 50, 70 and, 100 mm). The Marciniak–Kuczynski (M–K) theory is used to predict the time of localized necking in finite element simulations. Furthermore, a novel method for the determination of the inhomogeneity coefficient is presented in M–K model to simulate the groove width for M–K model. To verify finite element simulation results, Nakazima tests with 50 and 100 mm punch diameters were done as experimental studies. The comparison of experimental results and finite element analysis illustrates that the increasing bending or the out-of-plane loading can improve formability. At the end, the effect of bending on FLD is reported as an equation based on minor and major strains.
Rocznik
Strony
563--575
Opis fizyczny
Bibliogr. 33 poz., fot., rys., wykr.
Twórcy
autor
  • National-Local Joint Engineering Laboratory of Marine Mineral Resources Exploration Equipment and Safety Technology, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
  • School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
autor
  • CNPC Bohai Equipment Julong Steel Pipe Co., Ltd., Qingxian 062658, Hebei, China
autor
  • Department of Mechanical Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
  • INEGI, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
  • Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
  • Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
  • Faculty of Electrical–Electronic Engineering, Duy Tan University, Da Nang 550000, Vietnam
  • Center of Excellence in Design, Robotics, and Automation, Department of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9567, Tehran, Iran
Bibliografia
  • [1] Paul SK, Manikandan G, Verma RK. Prediction of entire forming limit diagram from simple tensile material properties. J Strain Anal Eng Des. 2013;48:386–94. https:// doi. org/ 10. 1177/ 03093 24713 488886.
  • [2] Habibi M, Ghazanfari A, Assempour A, Naghdabadi R, Hashemi R. Determination of forming limit diagram using two modified finite element models. Asjr-Me. 2017;48:141–3.
  • [3] Habibi M, Hashemi R, Sadeghi E, et al. Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures. J Mater Eng Perform. 2016;25:382–9. https:// doi. org/ 10. 1007/ s11665- 016- 1882-1.
  • [4] Backhofen SPK and WA. Plastic instability and fracture in sheet stretched over rigid punches. ASM Trans Q 1963;56:25–48.
  • [5] Goodwin GM. Application of strain analysis to sheet metal forming problems in the press shop. SAE Tech Pap 1968:380–7. https:// doi. org/ 10. 4271/ 680093.
  • [6] Swift HW. Plastic instability under plane stress. J Mech Phys Solids. 1952;1:1–18. https:// doi. org/ 10. 1016/ 0022- 5096(52) 90002-1.
  • [7] Hill R. On discontinuous plastic states, with special reference to localized necking in thin sheets. J Mech Phys Solids. 1952;1:19–30. https:// doi. org/ 10. 1016/ 0022- 5096(52) 90003-3.
  • [8] Marciniak Z, Kuczyński K. Limit strains in the processes of stretch-forming sheet metal. Int J Mech Sci. 1967;9:609–20. https:// doi. org/ 10. 1016/ 0020- 7403(67) 90066-5.
  • [9] Ghazanfari A, Assempuor A, Habibi M, Hashemi R. Investigation on the effective range of the through thickness shear stress on forming limit diagram using a modified Marciniak–Kuczynski model. Modares Mech Eng. 2016;16(1):137–43.
  • [10] Darabi R, Azodi HD, Bagherzadeh S. Investigation into the effect of material properties and arrangement of each layer on the formability of bimetallic sheets. J Manuf Process. 2017;29:133–48. https:// doi. org/ 10. 1016/j. jmapro. 2017. 07. 022.
  • [11] Hashemi R, Abrinia K. Analysis of the extended stress-based forming limit curve considering the effects of strain path and through-thickness normal stress. Mater Des. 2014;54:670–7. https:// doi. org/ 10. 1016/j. matdes. 2013. 08. 023.
  • [12] Allwood JM, Shouler DR. Generalised forming limit diagrams showing increased forming limits with non-planar stress states. Int J Plast. 2009;25:1207–30. https:// doi. org/ 10. 1016/j. ijplas. 2008. 11. 001.
  • [13] Assempour A, Nejadkhaki HK, Hashemi R. Forming limit diagrams with the existence of through-thickness normal stress. Comput Mater Sci. 2010;48:504–8. https:// doi. org/ 10. 1016/j. comma tsci. 2010. 02. 013.
  • [14] Eyckens P, Van Bael A, Van Houtte P. Marciniak-Kuczynski type modelling of the effect of through-thickness shear on the forming limits of sheet metal. Int J Plast. 2009;25:2249–68. https:// doi. org/ 10. 1016/j. ijplas. 2009. 02. 002.
  • [15] Ravi KD. Formability analysis of extra-deep drawing steel. J Mater Process Technol. 2002;130–131:31–41. https:// doi. org/ 10. 1016/ S0924- 0136(02) 00789-6.
  • [16] Neale KW, Chater E. Limit strain predictions for strain-rate sensitive anisotropic sheets. Int J Mech Sci. 1980;22:563–74. https:// doi. org/ 10. 1016/ 0020- 7403(80) 90018-1.
  • [17] Yun W, Peilong D, Zhenying X, Hua Y, Jiangping W, Jingjing W. A constitutive model for thin sheet metal in micro-forming considering first order size effects. Mater Des. 2010;31:1010–4. https:// doi. org/ 10. 1016/j. matdes. 2009. 07. 037.
  • [18] Hollomon H. Tensile deformation. Aime Trans. 1945;12:1–22.
  • [19] Ghazanfari A, Soleimani SS, Keshavarzzadeh M, Habibi M, Assempuor A, Hashemi R. Prediction of FLD for sheet metal by considering through-thickness shear stresses. Mech Based Des Struct Mach. 2019. https:// doi. org/ 10. 1080/ 15397 734. 2019. 16623 10.
  • [20] Butuc MC, Banabic D, Barata da Rocha A, Gracio JJ, Ferreira Duarte J, Jurco P, et al. The performance of Yld96 and BBC2000 yield functions in forming limit prediction. J MaterProcess Technol. 2002;125126:281–6. https:// doi. org/ 10. 1016/ S0924- 0136(02) 00399-0.
  • [21] Stoughton TB. General forming limit criterion for sheet metal forming. Int J Mech Sci. 2000;42:1–27. https:// doi. org/ 10. 1016/ S0020- 7403(98) 00113-1.
  • [22] Sing WM, Rao KP. Influence of material properties on sheet metal formability limits. J Mater Process Tech. 1995;48:35–41. https:// doi. org/ 10. 1016/ 0924- 0136(94) 01630-J.
  • [23] Rees DWA. Plastic instability. Basic Eng Plast. 2006;20:371–410. https:// doi. org/ 10. 1016/ b978-0- 7506- 8025-7. 50017-9.
  • [24] Shi MF, Gerdeen JC. Effect of strain gradient and curvature on forming limit diagrams for anisotropic sheets. J Mater Shap Technol. 1991;9:253–68. https:// doi. org/ 10. 1007/ BF028 33650.
  • [25] Fictorie E, van den Boogaard AH, Atzema EH. Influence of punch radius in a Nakazima test for mild steel and aluminium. Int J Mater Form. 2010;3:1179–82. https:// doi. org/ 10. 1007/ s12289- 010- 0983-x.
  • [26] American Society for Testing and Materials Annual. Annual book of ASTM standards. vol. Sec., 4. 1992. https://doi.org/https:// doi. org/ 10. 1520/ C1530_ C1530M- 04R10 E01.
  • [27] Habibi M, Hashemi R, Ghazanfari A, Naghdabadi R, Assempour A. Forming limit diagrams by including the M–K model in finite element simulation considering the effect of bending. Proc Inst Mech Eng Part L J Mater Des Appl. 2018;232:625–36. https:// doi. org/ 10. 1177/ 14644 20716 642258.
  • [28] Rahmatabadi D, Tayyebi M, Najafizadeh N, Hashemi R, Rajabi M. The influence of post-annealing and ultrasonic vibration on the formability of multilayered Al5052/MgAZ31B composite. Mater Sci Technol (United Kingdom). 2020. https:// doi. org/ 10. 1080/ 02670 836. 2020. 18677 84.
  • [29] Roostaei M, Darabi R. Investigation on formability of three-layer joined Al/Cu/Al sheets annealed at different temperature. Mater Sci Technol (United Kingdom). 2020. https:// doi. org/ 10. 1080/ 02670 836. 2020. 17926 37.
  • [30] Aghchai AJ, Shakeri M. Theoretical and experimental formability study of two-layer metallic sheet (Al1100/St12). Proc Inst Mech Eng Part B J Eng Manuf. 2008;222:1131–8. https:// doi. org/ 10. 1243/ 09544 054JE M1140.
  • [31] Darabi R, Azodi HD, Bagherzadeh S. Investigation into the effect of material properties and arrangement of each layer on the formability of bimetallic sheets. J Manuf Process. 2017. https:// doi. org/ 10. 1016/j. jmapro. 2017. 07. 022.
  • [32] Producers BR, Bureau N. A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc Lond Ser A Math Phys Sci. 1948;193:281–97. https:// doi. org/ 10. 1098/ rspa. 1948. 0045.
  • [33] Assempour A, Hashemi R, Abrinia K, Ganjiani M, Masoumi E. A methodology for prediction of forming limit stress diagrams considering the strain path effect. Comput Mater Sci. 2009;45:195–204. https:// doi. org/ 10. 1016/j. commatsci. 2008. 09. 025.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1f26cd4-ba4e-4cbc-941a-0866bddd46ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.