PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of control parameters on synchronization stability of virtual synchronous generator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Different from the synchronization mechanism of synchronous generators, the non-synchronous generators must be synchronized with the grid through a controller. Generally, the virtual synchronous generator (VSG) control strategy is adopted for this purpose. In view of the current situation, where the control loops are not comprehensively considered in the research of the synchronization stability of the VSG, this paper considers multiple control loops, such as active frequency loops, virtual governors, power filters and current constraint control, to establish the mathematical model of the VSG and infinite system. On this basis, the correlation formula between power angle difference and control parameters is deduced. Adopting the phase plane method, the influence of different control loops and their parameters on the transient synchronization stability is analyzed. Finally, a setting principle of the frequency modulation coefficient of virtual governors is proposed, which not only meets the response speed of control systems, but also has good control performance.
Rocznik
Strony
811--828
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wz.
Twórcy
autor
  • School of Electrical and Information Engineering, Tianjin University, China
autor
  • School of Electrical and Information Engineering, Tianjin University, China
autor
  • School of Electrical and Information Engineering, Tianjin University, China
autor
  • School of Electrical and Information Engineering, Tianjin University, China
Bibliografia
  • [1] Su M., Dong H., Liu K., Subsynchronous oscillation and its mitigation of VSC-MTDC with doubly-fed induction generator-based wind farm integration, Archives of Electrical Engineering, vol. 70, no. 1, pp. 53–72 (2021), DOI: 10.24425/aee.2021.136052.
  • [2] Huang L., Xin H., Ju P., Synchronization stability analysis and unified synchronization control structure of grid-connected power electronic devices, Electric Power Automation Equipment, vol. 40, no. 9, pp. 10–25 (2020), DOI: 10.16081/j.epae.202009042.
  • [3] Xu Z., Physical mechanism and research approach of generalized synchronous stability for power systems, Electric Power Automation Equipment, vol. 40, no. 9, pp. 3–9 (2020), DOI: 10.16081/j.epae.202008009.
  • [4] Jin H., Luo Y., Fan Y., Improved carrier phase shift modulation and voltage equalization control strategy in modular multilevel converter, Archives of Electrical Engineering, vol. 68, no. 4, pp. 803–815 (2019), DOI: 10.24425/aee.2019.130684.
  • [5] Qi C., Wang K., Wu P., Parameter space analysis of the rotor angle stability of virtual synchronous machine, Proceedings of the CSEE, vol. 39, no. 15, pp. 4363–4373 (2019), DOI: 10.13334/j.0258-8013.pcsee.181280.
  • [6] Pan D., Wang X., Liu F., Shi R., Transient Stability Impact of Reactive Power Control on Grid-Connected Converters, Proc. IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, pp. 4311–4316 (2019), DOI: 10.1109/ECCE.2019.8912567.
  • [7] Wang X., Taul M.G., Wu H., Liao Y., Blaabjerg F., Harnefors L., Grid Synchronization Stability of Converter-Based Resources – An Overview, IEEE Open Journal of Industry Applications, vol. 1, pp. 115–134 (2020), DOI: 10.1109/OJIA.2020.302039.
  • [8] Huang L., Zhang L., Xin H., Mechanism analysis of virtual power angle stability in droop-controlled inverters, Automation of Electric Power Systems, vol. 40, no. 12, pp. 117–123 (2019), DOI: 10.7500/AEPS20150709007.
  • [9] Shuai Z., Shen C., Liu X., Transient angle stability of virtual synchronous generators using lyapunov’s direct method, IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 4648–4661 (2018), DOI: 10.1109/TSG.2018.2866122.
  • [10] Hai H., Research on Control Strategy of Distributed Virtual Co-generator under Non-ideal Operating Environment, Metallurgical Industry Press (2020).
  • [11] Qoria T., Gruson F., Colas F., Denis G., Prevost T., Guillaud X., Critical clearing time determination and enhancement of grid-forming converters embedding virtual impedance as current limitation algorithm, IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 2, pp. 1050–1061 (2020), DOI: 10.1109/ JESTPE.2019.2959085.
  • [12] Qoria T., Gruson F., Colas F., Denis G., Prevost T., Guillaud X., Current limiting algorithms and transient stability analysis of grid-forming VSCs, Electric Power Systems Research, vol. 189 (2020), DOI: 10.1016/ j.epsr.2020.106726.
  • [13] Huang L., Xin H., Wang Z., Zhang L., Wu K., Hu J., Transient Stability Analysis and Control Design of Droop-Controlled Voltage Source Converters Considering Current Limitation, IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 578–591 (2019), DOI: 10.1109/TSG.2017.2749259.
  • [14] Zhao F., Shuai Z., Peng Y., Evaluation method for transient stability of inverter containing current limiter, Proceedings of the CSEE, vol. 41, no. 6, pp. 2245–2255 (2021), DOI: 10.13334/j.0258-8013.pcsee.200882.
  • [15] Xiong X., Wu C., Hu B., Pan D., Blaabjerg F., Transient Damping Method for Improving the Synchronization Stability of Virtual Synchronous Generators, IEEE Transactions on Power Electronics, vol. 36, no. 7, pp. 7820–7831 (2021), DOI: 10.1109/TPEL.2020.3046462.
  • [16] Xiong X., Wu C., Blaabjerg F., An Improved Synchronization Stability Method of Virtual Synchronous Generators Based on Frequency Feedforward on Reactive Power Control Loop, IEEE Transactions on Power Electronics, vol. 36, no. 8, pp. 9136–9148 (2021), DOI: 10.1109/TPEL.2021.3052350.
  • [17] Wu H., Ruan X., Yang D., Modeling of the Power Loop and Parameter Design of Virtual Synchronous Generators, Proceedings of the CSEE, vol. 35, no. 24, pp. 6508–6518 (2015), DOI: 10.13334/j.0258-8013.pcsee.2015.24.027.
  • [18] Zhu S., Liu K., Qin L., Analysis of transient stability of power electronics dominated power system: an overview, Proceedings of the CSEE, vol. 37, no. 14, pp. 3948–2962 (2017), DOI: 10.13334/j.0258-8013.pcsee.170366.
  • [19] Lv Z., Sheng W., Liu H., Application and challenge of virtual synchronous machine technology in power system, Proceedings of the CSEE, vol. 37, no. 2, pp. 1–9 (2017), DOI: 10.13334/j.0258-8013.pcsee.161604.
  • [20] Wang X., Huang C., Zhang J., Li C., Analysis of Control Strategy of Microgrid Inverter Based on Virtual Synchronous Generator, Electric engineering, vol. 12, pp. 45–47, 52 (2019), DOI: 10.19768/j.cnki.dgjs.2019.12.019.
  • [21] Yan D., Guerrero J.M., Chang L., Modeling, analysis, and design of a frequency-droop-based virtual synchronous generator for microgrid applications, Ecce Asia Downunder, Melbourne, VIC, Australia, pp. 643–649 (2013), DOI: 10.1109/ECCE-Asia.2013.6579167.
  • [22] Wang Y., Liu B., Duan S., Xu J., Research on Transient Characteristic Optimization of Virtual Synchronization Generator Control Strategy, Proceedings of the CSEE, vol. 39, no. 20, pp. 5885–5894 (2019), DOI: 10.13334/j.0258-8013.pcsee.182436.
  • [23] Wu H., Ruan X., Yang D., Modeling of the Power Loop and Parameter Design of Virtual Synchronous Generators, Proceedings of the CSEE, vol. 35, no. 24, pp. 6508–6518 (2015), DOI: 10.13334/j.0258-8013.pcsee.2015.24.027.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1ec44e8-f43a-42ef-aad2-76d8d3cb21cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.