Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Industrial wastewater contains heavy metals such as zinc, copper, lead, chromium, nickel, cadmium, arsenic, cobalt and mercury and is one of the types of sewage that negatively affect the environment. Metal ions can be removed using various types of sorbents. An interesting solution are polysaccharide-based sorbents. This paper presents research on the preparation and use of granules based on 2% alginate with the addition of 2.81% graphene oxide as sorbents of the following ions: Ni2+, Co2+, Cu2+, Pb2+ and Cd2+. Graphene oxide / alginate solutions, containing from 0.18% to 5.62% of GO, were prepared for the tests. Granules were formed by coagulating successive alginate solutions in 2.5% CaCl2 (Method 1). The possibility of introducing alginate solutions directly into solutions containing metal ions was also tested (Method 2). As a result of the study, it was observed that the use of ready-made sorbent (Method 1) allows the removal of ~ 30% of the contamination within 30 to 60 minutes. This method turned out to be the most effective for removing Ni2+, Co2+ and Cu2+ ions. The use of a simplified procedure (Method 2), on the other hand, allows the removal of all tested metal ions in amounts ranging from 5% (Cd2+) to 25% (Co2+).
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
85--101
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala
autor
- Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala
Bibliografia
- 1. Abka-Khajouei, R., Tounsi, L., Shahabi, N., Patel, A.K., Abdelkafi, S., Michaud, P., (2022). Structures, Properties and Applications of Alginates. Marine drugs, 20(6), p. 364. doi: doi.org/10.3390/md20060364
- 2. Ahmed, S. et al., (2024). Characterization and application of synthesized calcium alginate- graphene oxide for the removal of Cr3+, Cu2+ and Cd2+ ions from tannery effluents. Cleaner Water, 1(May), p. 100016. doi: 10.1016/j.clwat.2024.100016
- 3. Badr, N.B.E. et al., (2020). The effect of Industrial and Sewage discharges on the quality of receiving waters and human health, Riyadh City-Saudi Arabia. Egyptian Journal of Aquatic Research, 46(2), pp. 116–122. doi: 10.1016/J.EJAR.2019.12.005
- 4. Barquilha, C.E.R. et al., (2019). Biosorption of nickel(II) and copper(II) ions by Sargassum sp. in nature and alginate extraction products. Bioresource Technology Reports, 5(Ii), pp. 43–50. doi: 10.1016/j.biteb.2018.11.011
- 5. Cai, R. et al., (2023). A self-supported sodium alginate composite hydrogel membranę and its performance in filtering heavy metal ions. Carbohydrate Polymers, 300(October 2022), p. 120278. doi: 10.1016/j.carbpol.2022.120278
- 6. Crini, G. and Lichtfouse, E., (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), pp. 145–155. doi:10.1007/s10311-018-0785-9
- 7. Elgengehi, S. M. et al., (2020). Graphene and graphene oxide as adsorbents for cadmium and lead heavy metals: A theoretical investigation. Applied Surface Science, 507 (September 2019), p. 145038. doi: 10.1016/j.apsusc.2019.145038
- 8. Fernando, I.P.S. et al., (2020). Alginate-based nanomaterials: Fabrication techniques, properties, and applications. Chemical Engineering Journal, 391, p. 123823. doi:10.1016/j.cej.2019.123823
- 9. Gabryś, T. et al., (2023). GO-Enabled Bacterial Cellulose Membranes by Multistep, In Situ Loading: Effect of Bacterial Strain and Loading Pattern on Nanocomposite Properties. Materials, 16(3). doi: 10.3390/ma16031296
- 10. Jiao, C. et al., (2016.) Sodium alginate/graphene oxide aerogel with enhanced strengthtoughness and its heavy metal adsorption study. International Journal of Biological Macromolecules, 83, pp. 133–141. doi: 10.1016/j.ijbiomac.2015.11.061
- 11. Koźmińska, A., Hanus-Fajerska, E. and Muszyńska, E., (2014). Możliwości oczyszczania środowisk wodnych metodą ryzofiltracji. Woda-Środowisko-Obszary Wiejskie, 3(47), pp. 89–98.
- 12. Lentz, L. et al., (2022). Hybrid aerogels of sodium alginate/graphene oxide as efficient adsorbents for wastewater treatment. Materials Chemistry and Physics, 283(January), p. 125981. doi: 10.1016/j.matchemphys.2022.125981
- 13. Li, Q. et al., (2017). Filtration and adsorption properties of porous calcium alginate membrane for methylene blue removal from water. Chemical Engineering Journal, 316, pp. 623–630. doi: 10.1016/j.cej.2017.01.098
- 14. Majdoub, M. et al., (2021). Engineering of amine-based binding chemistry on functionalized graphene oxide/alginate hybrids for simultaneous and efficient removal of trace heavy metals: Towards drinking water. Journal of Colloid and Interface Science, 589, pp. 511–524. doi: 10.1016/j.jcis.2021.01.029.
- 15. Mohammed, C. et al., (2022). On the binding affinity and thermodynamics of sodium alginate-heavy metal ion interactions for efficient adsorption. Carbohydrate Polymer Technologies and Applications, 3(March), p. 100203. doi: 10.1016/j.carpta.2022.100203.
- 16. Shannon, R.D., (1976). Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chaleogenides. Acta Crystallographica, A32, pp. 751–767. doi: 10.1107/S0567739476001551.
- 17. Shi, T. et al., (2023). Adsorption behaviors of heavy metal ions by different hydrazonemodified sodium alginate in aqueous medium: Experimental and DFT studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 659(November 2022), p. 130754. doi: 10.1016/j.colsurfa.2022.130754
- 18. Zhang, H. et al., (2022). Fabrication of modified alginate-based biocomposite hydrogel microspheres for efficient removal of heavy metal ions from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 651(May), p. 129736. doi: 10.1016/j. colsurfa.2022.129736
- 19. Zhang, J., Zou, T. and Lai, Y., (2021). Novel method for industrial sewage outfall detection: Water pollution monitoring based on web crawler and remote sensing interpretation techniques. Journal of Cleaner Production, 312, p. 127640. doi: 10.1016/J.JCLEPRO.2021.127640
- 20. Zhang, P. et al., (2022). A biomass resource strategy for alginate-polyvinyl alcohol double network hydrogels and their adsorption to heavy metals. Separation and Purification Technology, 301, p. 122050. doi: 10.1016/J.SEPPUR.2022.122050
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1e85435-5dba-46db-ab84-daa908dac7a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.