PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

HWDCNN: Multi-class recognition in breast histopathology with Haar wavelet decomposed image based convolution neural network

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Among the predominant cancers, breast cancer is one of the main causes of cancer deaths impacting women worldwide. However, breast cancer classification is challenging due to numerous morphological and textural variations that appeared in intra-class images. Also, the direct processing of high resolution histological images is uneconomical in terms of GPU memory. In the present study, we have proposed a new approach for breast histopathological image classification that uses a deep convolution neural network (CNN) with wavelet decomposed images. The original microscopic image patches of 2048 1536 3 pixels are decomposed into 512 384 3 using 2-level Haar wavelet and subsequently used in proposed CNN model. The image decomposition step considerably reduces convolution time in deep CNNs and computational resources, without any performance downgrade. The CNN model extracts the deep features from Haar wavelet decomposed images and incorporates multi-scale discriminant features for precise prognostication of class labels. This paper also solves the demand for massive histopathology dataset by means of transfer learning and data augmentation techniques. The efficacy of proposed approach is corroborated on two publicly available breast histology datasets-(a) one provided as a part of international conference on image analysis and recognition (ICIAR 2018) grand challenge and (b) on BreakHis data. On the ICIAR 2018 validation data, our model showed an accuracy of 98.2% for both 4-class and 2-class recognition. Further, on hidden test data of the ICIAR 2018, we achieved an accuracy of 91%, outperforming existing state-of-the-art results significantly. Besides, on BreakHis dataset, the model achieved competing performance with 96.85% multi-class accuracy.
Twórcy
  • School of Electronic and Information Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
  • School of Electronic and Information Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
  • School of Electronic and Information Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
autor
  • School of Electronic and Information Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
Bibliografia
  • [1] Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin 2019;68(1):7–34.
  • [2] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394–424.
  • [3] Loukas C, Kostopoulos S, Tanoglidi A, Glotsos D, Sfikas C, Cavouras D. Breast cancer characterization based on image classification of tissue sections visualized under low magnification. Comput Math Methods Med 2013829461.
  • [4] Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 1991;19(5):403–10.
  • [5] Robertson S, Azizpour H, Smith K, Hartman J. Digital image analysis in breast pathology-from image processing techniques to artificial intelligence. Transl Res 2017;194:19–35.
  • [6] Saha M, Chakraborty C, Racoceanu D. Efficient deep learning model for mitosis detection using breast histopathology images. Comput Med Imaging Graph 2018;64:29–40.
  • [7] Jain RK, Mehta R, Dimitrov R, Larsson LG, Musto PM, Hodges KB, et al. Atypical ductal hyperplasia: inter observer and intra observer variability. Mod Pathol 2011;24(7):917–23.
  • [8] Allison KH, Rendi MH, Peacock S, Morgan T, Elmore JG, Weaver DL. Histological features associated with diagnostic agreement in atypical ductal hyperplasia of the breast: illustrative cases from the B-Path study. Histopathology 2016;69(6):1028–46.
  • [9] Hadjiiski L, Sahiner B, Chan HP. Advances in CAD for diagnosis of breast cancer. Curr Opin Obstet Gynecol 2006;18(1):64–70.
  • [10] Macenko M, Niethammer M, Marron JS, Borland D, Woosley JT, Guan X, et al. A method for normalizing histology slides for quantitative analysis. IEEE International Symposium on Biomedical Imaging: From Nano to Macro. 2009. pp. 1107–10.
  • [11] Giusti A, Caccia C, Ciresari DC, Schmidhuber J, Gambardella LM. A comparison of algorithms and humans for mitosis detection. IEEE International Symposium on Biomedical Imaging (ISIB). 2014. pp. 1360–3.
  • [12] Pomponiu V, Hariharan H, Zheng B, Gur D. Improving breast mass detection using histogram of oriented gradients. SPIE medical imaging. Computer-Aided Diagnosis; 2014.
  • [13] Cosatto E, Miller M, Graf HP, Meyer SJ. Grading nuclear pleomorphism on histological micrographs. IEEE International Conference on. Pattern Recognition. 2008. pp. 1–4.
  • [14] Benmazou S, Merouani HF. Wavelet based feature extraction method for breast cancer diagnosis. 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP). 2018. pp. 1–5.
  • [15] Roberts T, Newell M, Auffermann W, Vidakovic B. Wavelet-based scaling indices for breast cancer diagnostics. Stat Med 2017;36(12):1989–2000.
  • [16] Gallardo GM, Yang F, Ianzini F, Mackey M, Sonka M. Mitotic cell recognition with hidden Markov models. SPIE medical imaging. Visualization, Image-Guided Procedures, and display; 2004;661–8.
  • [17] Khan AM, Eldaly H, Rajpoot NM. A gamma-gaussian mixture model for detection of mitotic cells in breast cancer histopathology images. J Pathol Inform 2013;4:11.
  • [18] Hsu WH. Genetic wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning. Inform Sci 2004;163(1-3):103–22.
  • [19] Wang H, Zheng B, Yoon SW, Ko SH. A support vector machine-based ensemble algorithm for breast cancer diagnosis. Euro J Oper Res 2018;268(2):687–99.
  • [20] Nguyen C, Wang Y, Nguyen H. Random forest classifier combined with feature selection for breast cancer diagnosis and prognostic. J Bio Sci Eng 2013;6(5):551–60.
  • [21] Jain A, Atey S, Vinayak S, Srivastava V. Cancerous cell detection using histopathological image analysis. Int J Innov Res Comput Commun Eng 2015;2(12):7419–26.
  • [22] Vibha G, Bhavsar V. Breast cancer histopathological image classification: Is magnification important. IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2017. pp. 17–24.
  • [23] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Neu Info Pro Sys 2017;60(6). 94-90.
  • [24] Wang X, Yan Y, Tang P, Bai X, Liu W. Revisiting multiple instance neural networks. Pat Rec 2018;74:15–24.
  • [25] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. ArXiv 2014. 1409.1556.
  • [26] Razzak MI, Naz S, Zaib A. Deep learning for medical image processing: overview, challenges and the future. In: Dey N, Ashour A, Borra S, editors. Classification in BioApps lecture notes in computational vision and biomechanics, vol 26. 2018.
  • [27] Ker J, Wang L, Rao J, Lim T. Deep learning applications in medical image analysis. IEEE Access 2018;6:9375–89.
  • [28] Urban G, Bache KM, Phan D, Sobrino A, Shmakov AK, Hachey SJ, et al. Deep learning for drug discovery and Cancer research: automated analysis of vascularization images. IEEE/ACM Trans on Comp Bio Bioinfo 2018;9375–89.
  • [29] Komura D, Ishkiwa S. Machine learning methods for histopathological image analysis. Comput Struct Biotechnol J 2018;16:34–42.
  • [30] Aresta G, Araujo T, Kwok S, Chennamsetty SS, Safwan M, Alex V, et al. Bach: grand challenge on breast cancer histology images. ArXiv 2018. 1808.04277.
  • [31] Rakhlin A, Shvets A, Iglovikov V, Kalinin AA. Deep convolutional neural networks for breast cancer histology image analysis. In: Campilho A, Karray F, ter Haar Romeny B, editors. Image analysis and recognition. Povoa de Varzim: Springer International Publishing; 2018. p. 737–44.
  • [32] Kwok S. Multiclass classification of breast cancer in whole-slide images. In: Campilho A, Karray F, ter Haar Romeny B, editors. Image analysis and recognition. Povoa de¨ Varzim: Springer International Publishing; 2018. p. 931–40.
  • [33] Chennamsetty SS, Safwan M, Alex V. Classification of breast cancer histology image using ensemble of pre-trained neural networks. In: Campilho A, Karray F, ter Haar Romeny B, editors. Image analysis and recognition. Povoa de Varzim: Springer International Publishing; 2018. p. 804–11.
  • [34] Brancati N, Frucci M, Riccio D. Multi-classification of breast cancer histology images by using a fine-tuning strategy. In: Campilho A, Karray F, ter Haar Romeny B, editors. Image analysis and recognition. Povoa de Varzim: Springer International Publishing; 2018. p. 771–8.
  • [35] Wang Y, Sun L, Ma K, Fang J. Breast cancer microscope image classification based on CNN with image deformation. In: Campilho A, Karray F, ter Haar Romeny B, editors. Image analysis and recognition. Povoa de Varzim: Springer International Publishing; 2018. p. 845–52.
  • [36] Cao H, Bernard S, Heutte L, Sabourin R. Improve the perfor-mance of transfer learning without fine-tuning using dissimilarity based multi-view learning for breast cancer histology images. In: Campilho A, Karray F, ter Haar Romeny B, editors. Image analysis and recognition. Povoa de Varzim: Springer International Publishing; 2018. p. 779–87.
  • [37] Aresta G, Araújo T, Kwok S, Chennamsetty SS, Safwan M, Alex V, et al. Grand challenge on breast cancer histology images(BACH) ICIAR; https://iciar2018-challenge.grand-challenge.org2018.
  • [38] Araújo T, Aresta G, Castro E, Rouco J, Aguiar P, Eloy C, et al. Classification of breast cancer histology images using convolutional neural networks. PLoS One 2017;2(6): e0177544.
  • [39] Nazeri K, Aminpour A, Ebrahimi M. Two-stage convolutional neural network for breast cancer histology image classification. In: Campilho A, Karray F, ter Haar Romeny B, editors. Image analysis and recognition. ICIAR 2018. Lecture notes in computer science. 2018. pp. 717–26.
  • [40] Cruz-Roa A, Gilmore H, Basavanhally A, Feldman M, Ganesan S, Shih NNC, et al. Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent. Sci Rep 2017;7:46450.
  • [41] Kausar T, Wang M, Wu B, Idrees M, Kanwal B. Multi-scale deep neural network for mitosis detection in histological images. 3rd International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS). 2018. pp. 47–51.
  • [42] Reinhard E, Adhikhmin M, Gooch B, Shirley P. Color transfer between images. IEEE Comput Graphics Appl 2001;21(5):34–41.
  • [43] Roy K, Banik D, Bhattacharjee S, Nasipuri M. Patch-based system for classification of breast histology images using deep learning. Comput Med Imaging Graph 2019;71:90–103.
  • [44] Alom MZ, Yakopcic C, Taha TM, Asari VK. Breast Cancer classification from histopathological images with inception recurrent residual convolutional neural network. J Digit Imaging 2019;1–13.
  • [45] Spanhol FA, Oliveira LS, Petitjean C, Heutte L. A dataset for breast cancer histopathological image classification. IEEE Trans Bio Eng 2016;63(7):1455–62.
  • [46] Pego A, Aguiar P. Bioimaging 2015; htp://www.bioimaging2015.ineb.up.pt/dataset.html2015.
  • [47] He K, Sun J. Convolutional neural networks at constrained time cost. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015. pp. 5353–60.
  • [48] Wan T, Liu X, Chen J, Qin J. Wavelet-based statistical features for distinguishing mitotic and non-mitotic cells in breast cancer histopathology. IEEE International Conference on Image Processing (ICIP). 2014. pp. 2290–4.
  • [49] Issac Ns, Palanisamy P, Sujathan K, Bengtsson E. Analysis of nuclei textures of fine needle aspirated cytology images for breast cancer diagnosis using Complex Daubechies wavelets. Signal Process 2013;93(10):2828–37.
  • [50] Kang E, Min J, Ye JC. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med Phys 2017;44(10):e360–75.
  • [51] Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Ana Quant Cytol Histol 2001;23(4):291–9.
  • [52] Gonzalez RC, Woods RE. Digital image processing. 3rd ed. Boston, USA: Addison-Wesley; 2008.
  • [53] Ciresan DC, Meier U, Masci J, Gambardella LM, Schmidhuber J. Flexible, high performance convolutional neural networks for image classification. International Joint Conference on Artificial Intelligence (IJCAI). 2011. pp. 1237–42.
  • [54] Dechoux B, Gardella C, Charron FB, Hinshelwood J, Buchmann MA, Geron A, et al. Keras; https://github.com/keras-team/keras.git2019.
  • [55] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, et al. Imagenet large scale visual recognition challenge. Int J Com Vis 2015;115(3):211.
  • [56] Kong T, Yao A, Chen Y, Sun F. Hypernet: towards accurate region proposal generation and joint object detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. pp. 845–53.
  • [57] Irshad H, Antoine V, Ludovic R, Daniel R. Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-current status and future potential. IEEE Rev Bio Eng 2013;7:97–114.
  • [58] Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. Tensorflow: a system for large-scale machine learning. Symposium on Operating Systems Design and Implementation (OSDI). 2016. pp. 265–83.
  • [59] Mahbod A, Ellinger I, Ecker R, Smedby Ö, Wang C. Breast cancer histological image classification using fine-tuned deep network fusion. In: Campilho A, Karray F, ter Haar Romeny B, editors. Image analysis and recognition. ICIAR 2018. Lecture notes in computer science. 2018. pp. 754–62.
  • [60] Nawaz M, Sewissy AA, Soliman TH. Multi-class breast Cancer classification using deep learning convolutional neural network. Int J Adv Comp Sci App 2018;9(6).
  • [61] Bandi P, Geessink O, Manson Q, Dijk MV, Balkenhol M, Hermsen M, et al. From detection of individual metastases to classification of lymph node status at the patient level: the CAMELYON17 challenge. IEEE Trans on Med Imaging 2019;38(2):550–60.
  • [62] Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 1990;36:961–1005.
  • [63] Liu Y, Gadepalli K, Norouzi M, Dahl GE, Kohlberger T, Boyko A, et al. Detecting cancer metastases on gigapixel pathology images; https://arxiv.org/abs/1703.024422017.
  • [64] Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley David, Ozair S, et al. Generative adversarial nets; https://arxiv.org/abs/1406.26612014.
  • [65] Simard PY, Steinkraus D, Platt JC. Best practices for convolutional neural networks applied to visual document analysis. IEEE International Conference on Document Analysis and Recognition. 2003. pp. 958–62.
  • [66] Haeberli P, Voorhies D. Image processing by linear interpolation and extrapolation. IRIS Universe Mag 1994;28:8–9.
  • [67] Spanhol FA, Oliveira LS, Petitjean C, Heutte L. Breast cancer histopathological image classification using convolutional neural networks. IEEE International Joint Conference on Neural Networks (IJCNN). 2016. pp. 2560–7.
  • [68] Han Z, Wei B, Zheng Y, Yin Y, Li K, Li S. Breast cancer multi classification from histopathological images with structured deep learning model. Sci Rep 2017;7(1). 4172.
  • [69] Huang G, Liu Z, Maaten LV, Weinberger KQ. Densely connected convolutional networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. pp. 2261–9.
  • [70] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. pp. 770–8.
  • [71] Bejnordi BE, Litjens G, Timofeeva N, Otte-Höller I, Homeyer A, Karssemeijer N, et al. Stain specific standardization of whole-slide histopathological images. IEEE Trans Med Imaging 2016;35(2):404–15.
  • [72] Olivier R, Cao H. Nearest neighbor value interpolation. Int J Adv Comput Sci Appl 2012;3(4):25–30.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1dd4d40-5e42-4500-a46c-631630919a80
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.