PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on low-velocity impact resistance and damage characteristics of M-type GFRP foldcore sandwich structure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The M-type GFRP foldcore was prepared by thermal pressing method and was bonded with the panel to obtain the complete foldcore sandwich structure. The influence of impact energy and impact position on the damage mode and impact dynamic response under the low-velocity impact of GFRP M-type foldcore sandwich structure is studied through experiment and numerical simulation. The results show that the impact position has a significant influence on the damage mode and impact resistance of the foldcore sandwich structure, mainly fracture damage at Base-impact while mainly tensile damage at Node-impact. The impact resistance of Node-impact is better than the Base-impact. The numerical simulation model can also predict the damage mode and the impact dynamic response well.
Rocznik
Strony
art. no. e193, 2023
Opis fizyczny
Bibliogr. 25 poz., fot., rys., wykr.
Twórcy
autor
  • College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
autor
  • College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
Bibliografia
  • 1. Wu DL. Aircraft structural lightweight research and the development of structural composites. Missile Space Launch Technol. 1993;06:1–9.
  • 2. Bruno P, Lucas B, Daren B. A350 XWB composite repairs: analysis and repair of in-service damage to composite structure. Airbus Techn Mag. 2016;57:17 (Flight Airworthiness Support Technology).
  • 3. Xiong J, Du YT, Yang W, et al. Recent progress in sandwich structure design and mechanical properties of lightweight composite materials. J Astronaut. 2020;41(06):749–60.
  • 4. Miura K. Zeta-core sandwich- its concept and realization. Institute of Space and Aeronautical Science, University of Tokyo; 1972.
  • 5. Alekseev KA, Zakirov IM, Karimova GG. Geometrical model of creasing roll for manufacturing line of the wedge-shaped folded cores production. Russ Aeronaut (Iz VUZ). 2011;54:1. https://doi. org/10.3103/S1068799811010181.
  • 6. Heimbs S, Middendorf P, Kilchert S, et al. Experimental and numerical analysis of composite folded sandwich sandwich structures under compression. Appl Compos Mater. 2007;14(5):363–77.
  • 7. Heimbs S. Virtual testing of sandwich sandwich structures using dynamic finite element simulations. Comput Mater Sci. 2009;45(2):205–16.
  • 8. Heimbs S, Cichosz J, Klaus M, Kilchert S, Johnson AF. Sand- wich structures with textile-reinforced composite foldcores under impact loads. Compos Struct. 2009;92:6. https://doi.org/10.1016/j. compstruct.2009.11.001.
  • 9. Zhang JJ, Lu GX, Zhang Y, You Z. A study on ballistic per- formance of origami sandwich panels. Int J Impact Eng. 2021. https://doi.org/10.1016/J.IJIMPENG.2021.103925.
  • 10. Hu JQ, Liu AK, Zhu SW, Zhang HQ, Wang B, Zheng HY, Zhou ZG. Novel panel-core connection process and impact behaviors of CF/PEEK thermoplastic composite sandwich structures with truss cores. Compos Struct. 2020. https://doi.org/10.1016/j.comps truct.2020.112659.
  • 11. Li ZJ, Chen WS, Hao H. Blast mitigation performance of cladding using square dome-shape kirigami folded structure as core. Int J Mech Sci. 2018. https://doi.org/10.1016/j.ijmecsci.2018.06.035.
  • 12. Zhou HZ, Wang ZJ. Study on energy absorption properties of M-type folded core sandwich plate. Journal of Aviation. 2016;37(02):579–87.
  • 13. Klaus M, Reimerdes HG, Gupta NK. Experimental and numerical investigations of residual strength after impact of sandwich panels. Int J Impact Eng. 2012. https://doi.org/10.1016/j.ijimpeng.2012. 01.001.
  • 14. Kilchert S, Johnson AF, Voggenreiter H. Modelling the impact behaviour of sandwich structures with folded composite cores. Compos Part A. 2014. https://doi.org/10.1016/j.compositesa.2013. 10.023.
  • 15. Wang YL, Zhao WZ, Zhou G, Wang CY. "Analysis and paramet- ric optimization of a novel sandwich panel with double-V auxetic structure core under air blast loading. Int J Mech Sci. 2018. https://doi.org/10.1016/j.ijmecsci.2018.05.001.
  • 16. Zhang PW, Li SQ, Wang ZH, Zhao LM. Dynamic response of folding core layer sandwich beam under explosive load. Bang Impact. 2018;38(01):140–7.
  • 17. Yannick M, Corinne B. Safe operations with composite aircraft. Saf First. 2014;18:3.
  • 18. Wang ZJ, Khaliulin VI, Skripkin E. Geometric design method of folded structural core lattice configurations. J Nanjing Univ Aeronaut Astronaut. 2002;01:6–11.
  • 19. Deng YF, Zeng XZ, Wang YT, Du J, Zhang YB. Research on the low-velocity impact performance of composite sandwich structure with curved-crease origami foldcore. Thin-Walled Struct. 2022. https://doi.org/10.1016/J.TWS.2022.109106.
  • 20. Du Y, Song C, Xiong J, et al. Fabrication and mechanical behav- iors of carbon fiber reinforced composite foldcore based on curved-crease origami. Compos Sci Technol. 2019. https://doi. org/10.1016/j.compscitech.2019.02.019.
  • 21. Huang CH, Lee YJ. Experiments and simulation of the static contact crush of composite laminated plates. Compos Struct. 2003;61:3. https://doi.org/10.1016/S0263-8223(02)00047-8.
  • 22. Yu GC, Wu LZ, Ma L, et al. Low velocity impact of carbon fiber aluminum laminates. Compos Struct. 2015. https://doi.org/10. 1016/j.compstruct.2014.09.054.
  • 23. Sanan HK, Ankush PS, Rajesh K, Venkitanarayanan P. Effect of metal layer placement on the damage and energy absorption mechanisms in aluminium/glass fibre laminates. Int J Impact Eng. 2018. https://doi.org/10.1016/j.ijimpeng.2018.04.011.
  • 24. Singh H, Mahajan P. Modeling damage induced plasticity for low velocity impact simulation of three dimensional fiber reinforced composite. Compos Struct. 2015. https://doi.org/10.1016/j.comps truct.2015.04.070.
  • 25. Xiao JR, Gama BA, Gillespie JW. Progressive damage and delam- ination in plain weave S-2 glass/SC-15 composites under quasi-static punch-shear loading. Compos Struct. 2005;78:2. https://doi. org/10.1016/j.compstruct.2005.09.001.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1d0eca7-e4d7-4b0b-aba4-88ebdb68fc39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.