PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of dynamic aspects of operation in railway vehicle traction drive system including the electromechanical coupling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the influence of electromechanical interaction in an electric motor on the railway vehicle driving system dynamics was investigated. This is the train driven by DC. In particular, there is considered influence of electromagnetic field between a rotor and stator on excitation of resonant torsional vibrations of the drive system. Conclusions drawn from the computational results can be very useful during the design phase of these devices as well as helpful for their users during regular maintenance.
Rocznik
Tom
Strony
101--111
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B Street, 02-106 Warszawa, Poland
Bibliografia
  • 1. Amezquita-Brooks Luis, Eduardo Liceaga-Castro, Jesus Liceaga-Castro. 2014. “Novel design model for the stator currents subsystem of induction motors”. Applied Mathematical Modelling 38(23): 5623-5634. ISSN 0307-904X.
  • 2. Bogacz Roman, Kurt Frischmuth. 2016. “On dynamic effects of wheel–rail interaction in the case of Polygonalisation”. Mechanical Systems and Signal Processing 79: 166-173. ISSN: 0888-3270. DOI: 10.1016/j.ymssp.2016.03.001.
  • 3. Czech Piotr. 2012. „Determination of the course of pressure in an internal combustion engine cylinder with the use of vibration effects and radial basis function - preliminary research”. Communications in Computer and Information Science 329: 175-182. DOI: https://doi.org/10.1007/978-3-642-34050-5_21. Springer, Berlin, Heidelberg. ISBN: 978-3-642-34049-9. ISSN: 1865-0929. In: Mikulski Jerzy (eds), Telematics in the Transport Environment, 12th International Conference on Transport Systems Telematics, Katowice Ustron, Poland, October 10-13, 2012.
  • 4. Czech Piotr. 2011. „Diagnosing of disturbances in the ignition system by vibroacoustic signals and radial basis function - preliminary research”. Communications in Computer and Information Science 239: 110-117. DOI: https://doi.org/10.1007/978-3-642-24660-9_13. Springer, Berlin, Heidelberg. ISBN: 978-3-642-24659-3. ISSN: 1865-0929. In: Mikulski Jerzy (eds), Modern Transport Telematics, 11th International Conference on Transport Systems Telematics, Katowice Ustron, Poland, October 19-22, 2011.
  • 5. Duda Sławomir. 2014. “Numerical simulations of the wheel-rail traction forces using the electromechanical model of an electric locomotive”. Journal Theoretical and Applied Mechanics 52(2): 395-404.
  • 6. Eugene I. Rivin. 1999. Stiffness and damping in mechanical design, CRC Press, pages 528. DOI:10.1115/1.802939.
  • 7. Haniszewski Tomasz. 2017. “Modeling the dynamics of cargo lifting process by overhead crane for dynamic overload factor estimation”. Journal of Vibroengineering 19(1): 75-86. DOI: 10.21595/jve.2016.17310. ISSN: 1392-8716.
  • 8. Haniszewski Tomasz, Damian Gaska. 2017. “Numerical modelling of I-Beam jib crane with local stresses in wheel supporting flanges - influence of hoisting speed”. Nase More 64(1): 7-13. DOI: 10.17818/NM/2017/1.2. ISSN: 0469-6255.
  • 9. Henao Humberto, Shahin Hedayati Kia, Gérard-André Capolino. 2011. “Torsional-vibration assessment and gear-fault diagnosis in railway traction system”. IEEE Trans. Ind. Electron. 58(5): 1707-1717. ISSN: 0278-0046. DOI: 10.1109/TIE.2011.2106094.
  • 10. Jára Miloslav. 2017. “Introduction to the Influence of Torsional Oscillation of Driving Wheelsets to Wheel/Axle Press-fitted Joint”. Conference proceedings of Student's Conference STC. P. 17-26.
  • 11. Jouch Lieh, Jan Yin. 1998. “Stability of a Flexible Wheelset for High Speed Rail Vehicles With Constant and Varying Parameters”. Journal of Vibration and Acoustics 120(4): 997-1002. ASME. DOI: 10.1115/1.2893933.
  • 12. Klorkopet Peter. z. 2014. “The Incfinlualencle of Electromagnetic Processes on Stapbility of Loiclomotives Traction Drive in The Slipping Mode”. Transalport Problems 9 (2): 41-48.
  • 13. Mei T.X., I. Hussain. 2010. “Detection of wheel-rail conditions for improved traction control”. Railway Traction Systems (RTS 2010) IET Conference 1(6): 13-15. DOI:10.1109/Control.2012.6334713.
  • 14. Pochanke Andrzej. 2008. „Engines induced with permanent magnet in applying to the drive of traction vehicles”. TTS - Rail Transport Technique 14(5-6): 22-25.
  • 15. Shahin Hedayati Kia, Humberto Henao, Gérard-André Capolino. 2009. “Torsional vibration assessment in railway traction system mechanical transmission”. 2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives. P. 1-8. ISBN: 978-1-4244-3441-1. DOI: 10.1109/DEMPED.2009.5292750.
  • 16. Vectron – the drive system. Siemens.com Global Website.
  • 17. Voltr Petr, Michael Lata, Ondřej Černý. 2012. “Measuring of wheel-rail adhesion characteristics at a test stand”. In: Proceedings of XVIII International Conference on Engineering Mechanics. Czech Republic.
  • 18. Winterling M.W., E. Tuinman, W. Deleroi. 1998. “Simulation of drive line dynamics of light-rail vehicles”. In: Simulation ’98. International Conference. Conf. Publ. No. 457. IET. P. 79-84. DOI:10.1049/cp:19980619.
  • 19. Xu Kun, Zeng Jing, Wei Lai. 2019. “An analysis of the self-excited torsional vibration of high-speed train drive system”. Journal of Mechanical Science and Technology 33(3): 1149-1158.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1d0dc05-7c3b-405d-9828-7441f3fbf19a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.