PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of magnetic fields and fertilizers on grass and onion growth on technogenic soils

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article deals with effect the use of organic (biohumus) and mineral (biochar) fertilizers based on the products of chicken vital activity on changing the fertility of technogenic sod-podzolic soils exposed to constant and unstable magnetic fields. The germination and growth dynamics of grasses and onions were investigated. The rational rate of introduction of the studied fertilizers into the technogenic soil is determined. Running (RMF) and direct (DMF) magnetic fields were applied in two ways: with fertilizers added and without fertilizers added. It has been established that the effect of preliminary magnetization of technogenic soil has a significant effect on lawn grass germination and the length of onion feathers, which are more than twice the height when exposed to the RMF, as compared with DMF. The effect of RMF on grass germination was also twice as high for DMF, when fertilizers were added. The DMF magnetization and biohumus helps to increase the grass sprout height by 10–20%. Onion sprouts were higher in two cases: DMF and biohumus; RMF and biochar. The influence of the factor of fertilizer type has a significant effect in 30–40% of cases, whilst at a spread rate of more than 5%, significant chemical activity of biochar negatively affects the germination of both grass and onion.
Wydawca
Rocznik
Tom
Strony
55--62
Opis fizyczny
Bibliogr. 40 poz., fot., rys., tab.
Twórcy
  • Saint Petersburg Mining University, Faculty of Mechanical Engineering, Department of Transport and Technological Processes and Machines, 2, 21st Line, St Petersburg 199106, Russia
  • Saint Petersburg Mining University, Department of Industrial Safety, St Petersburg, Russia
  • Escuela Politecnica Nacional, Departamento de Petróleos, Quito, Ecuador
  • JSC Roskar Poultry Farm, Pervomayskoe settlement, Leningrad region, Russia
Bibliografia
  • AGLIASSA C., NARAYANA R., CHRISTIE J. M., MAFFEI M.E. 2018. Geomagnetic field impacts on cryptochrome and phytochrome signaling. Journal of Photochemistry and Photobiology. B: Biology. Vol. 185 p. 32–40. DOI 10.1016/j.jphotobiol. 2018.05.027.
  • AL-GHAMDI A.A.M. 2020. The effect of magnetic water on soil characteristics and Raphanus sativus L. growth. World Journal of Environmental Biosciences. Vol. 9. Iss. 1 p. 16–20.
  • BERETTA G., MASTORGIO A.F., PEDRALI L., SAPONARO S., SEZENNA E. 2019. The effects of electric, magnetic and electromagnetic fields on microorganisms in the perspective of bioremediation. Reviews in Environmental Science and Biotechnology. Vol. 18. Iss. 1 p. 29–75. DOI 10.1007/s11157-018-09491-9.
  • BRYSIEWICZ A., FORMICKI K. 2019. The effect of static magnetic field on melanophores in the sea trout (Salmo trutta m. trutta Linnaeus, 1758) embryos and larvae. Italian Journal of Animal Science. Vol. 18. Iss. 1 p. 1431–1437. DOI 10.1080/ 1828051X.2019.1680319.
  • BRYSIEWICZ A., FORMICKI K., TAŃSKI A., WESOŁOWSKI P. 2017. Magnetic field effect on melanophores of the European whitefish Coregonus lavaretus (Linnaeus, 1758) and vendace Coregonus albula (Linnaeus, 1758) (Salmonidae) during early embryogenesis. The European Zoological Journal. Vol. 84. Iss. 1 p. 49–60. DOI 10.1080/11250003.2016.1272644.
  • BINGI V.N. 2002. Magnetobiology, experiments and models. 2nd ed. Moscow. MILTA. ISBN 5-94505-033-4 pp. 592.
  • BUKHARI S.A., FARAH N., MUSTAFA G., MAHMOOD S., NAQVI S.A.R. 2019. Magneto-priming improved nutraceutical potential and antimicrobial activity of Momordica charantia L. without affecting nutritive value. Applied Biochemistry and Biotechnology. Vol. 188. Iss. 3 p. 878–892. DOI 10.1007/ s12010-019-02955-w.
  • CHAPMAN E.E.V., MOORE C., CAMPBELL L.M. 2019. Native plants for revegetation of mercury-and arsenic-contaminated historical mining waste – can a low-dose selenium additive improve seedling growth and decrease contaminant bioaccumulation? Water, Air, & Soil Pollution. Vol. 230. Iss. 9 p. 225. DOI 10.1007/s11270-019-4267-x.
  • DA SILVA J.A.T., DOBRÁNSZKI J. 2016. Magnetic fields: how is plant growth and development impacted? Protoplasma. Vol. 253. Iss. 2 p. 231–248. DOI 10.1007/s00709-015-0820-7.
  • FERRADA P., RODRÍGUEZ S., SERRANO G., MIRANDA-OSTOJIC C., MAUREIRA A., ZAPATA M. 2020. An analytical-experimental approach to quantifying the effects of static magnetic fields for cell culture applications. Applied Sciences. Vol. 10. Iss. 2, 531. DOI 10.3390/app10020531.
  • FEY D.P., JAKUBOWSKA M., GRESZKIEWICZ M., ANDRULEWICZ E., OTREMBA Z., URBAN-MALINGA B. 2019. Are magnetic and electromagnetic fields of anthropogenic origin potential threats to early life stages of fish?. Aquatic Toxicology. Vol. 209 p. 150–158. DOI 10.1016/j.aquatox.2019.01.023.
  • GASCÓ G., ÁLVAREZ M. L., PAZ-FERREIRO J., MÉNDEZ A. 2019. Combining phytoextraction by Brassica napus and biochar amendment for the remediation of a mining soil in Riotinto (Spain). Chemosphere. Vol. 231 p. 562–570. DOI 10.1016/ j.chemosphere.2019.05.168.
  • KARACA O., CAMESELLE C., REDDY K.R. 2018. Mine tailing disposal sites: contamination problems, remedial options and phytocaps for sustainable remediation. Reviews in Environmental Science and Biotechnology. Vol. 17. Iss. 1 p. 205–228. DOI 10.1007/s11157-017-9453-y.
  • KONISHI Y., AKIYAMA Y., MANABE Y., SATO F. 2020. Fundamental study on volume reduction of heavy metal-contaminated soil by magnetic separation. Progress in Superconductivity and Cryogenics. Vol. 22. Iss. 2 p. 1–6. DOI 10.9714/psac.2020. 22.2.001.
  • KOVSHOV S.V., CHERKAY Z.N. 2016. Expert assessment of industrial safety in the territorial units of the mineral resource complex of Russia. Journal of Mining Institute. Vol. 219 p. 477–481. DOI 10.18454/pmi.2016.3.477.
  • LEWANDOWSKA S., MICHALAK I., NIEMCZYK K., DETYNA J., BUJAK H., ARIK P. 2019. Influence of the static magnetic field and algal extract on the germination of soybean seeds. Open Chemistry. Vol. 17. Iss. 1 p. 516–525. DOI 10.1515/chem-2019-0039.
  • LIMA A. T., MITCHELL K., O’CONNELL D. W., VERHOEVEN J., VAN CAPPELLEN P. 2016. The legacy of surface mining: Remediation, restoration, reclamation and rehabilitation. Environmental Science & Policy. Vol. 66 p. 227–233. DOI 10.1016/j.en-vsci.2016.07.011.
  • LUO J., HE W., YANG D., WU J., GU X.S. 2019. Magnetic field enhance decontamination efficiency of Noccaea caerulescens and reduce leaching of non-hyperaccumulated metals. Journal of Hazardous Materials. Vol. 368 p. 141–148. DOI 10.1016/j.jhazmat.2019.01.046.
  • MASSAH J., DOUSTI A., KHAZAEI J., VAEZZADEH M. 2019. Effects of water magnetic treatment on seed germination and seedling growth of wheat. Journal of Plant Nutrition. Vol. 42. Iss. 11–12 p. 1283–1289. DOI 10.1080/01904167.2019.1617309.
  • MICHALAK I., LEWANDOWSKA S., NIEMCZYK K., DETYNA J., BUJAK H, ARIK P., BARTNICZAK A. 2019. Germination of soybean seeds exposed to the static/alternating magnetic field and algal extract. Engineering in Life Sciences. Vol. 19. Iss. 12 p. 986–999. DOI 10.1002/elsc.201900039.
  • MUTHERT L., IZZO L. G., VAN ZANTEN M., ARONNE G. 2020. Root tropisms: Investigations on earth and in space to unravel plant growth direction. Frontiers in Plant Science. Vol. 10, 1807. DOI 10.3389/fpls.2019.01807.
  • NOVITSKAYA G.V., FEOFILAKTOVA T.V., MOLOKANOV D.R., DOBROVOLSKII M.V., NOVITSKII Y.I. 2018. Influence of a permanent magnetic field on the composition and content of sugars in leaves and storage roots of radish plants of major types of magnetic orientation. Russian Journal of Plant Physiology. Vol. 65. Iss. 1 p. 57–62. DOI 10.1134/S1021443718010089.
  • NOVITSKY YU.I. 2002. Magnetic field in the plants’ life. Voronezh. CCBI. ISBN 978-5-02-039962-4 pp. 120.
  • NOVITSKY YU.I., NOVITSKAYA G.V. 2016. Deystviye postoyannogo magnitnogo polya na rasteniya [The effect of a constant magnetic field on plants]. Moscow. Nauka. ISBN 978-5-02-039962-4 pp. 352.
  • NYAKANE N.E., MARKUS E.D., SEDIBE M.M. 2019. The effects of magnetic fields on plants growth: A comprehensive review. International Journal of Food Engineering. Vol. 5. Iss. 1 p. 79–87. DOI 10.18178/ijfe.5.1.79-87.
  • ORTEGA D.D.J.A., RODRÍGUEZ Y.A., DEL CASTILLO MOREJÓN O. 2018. Approach to the influence of the terrestrial magnetic field on the human health. Rehabilitation. Vol. 3. Iss. 2 p. 28–32. DOI 10.11648/j.rs.20180302.11.
  • PANAGOPOULOS D. J., CHROUSOS G.P. 2019. Shielding methods and products against man-made electromagnetic fields: Protection versus risk. Science of the Total Environment. Vol. 667 p. 255–262. DOI 10.1016/j.scitotenv.2019.02.344.
  • PASHKEVICH M.A., BECH J., MATVEEVA V.A., ALEKSEENKO A.V. 2020. Biogeochemical assessment of soils and plants in industrial, residential and recreational areas of Saint Petersburg. Journal of Mining Institute. Vol. 241. Iss. 125–130. DOI 10.31897/PMI.2020.1.125.
  • PASHKEVICH M.A., PETROVA T.A., RUDZISHA E. 2019. Lignin sludge application for forest land reclamation: Feasibility assessment. Journal of Mining Institute. Vol. 235 p. 106–112. DOI 10.31897/ PMI.2019.1.106.
  • QU M., CHEN J., HUANG Q., CHEN J., XU Y., LUO J., WANG K., GAO W., ZHENG Y. 2018. Bioremediation of hexavalent chromium contaminated soil by a bioleaching system with weak magnetic fields. International Biodeterioration & Biodegradation. Vol. 128 p. 41–47. DOI 10.1016/j.ibiod.2016.08.022.
  • QU G., LV P., CAI Y., TU C., MA X., NING P. 2020. Enhanced anaerobic fermentation of dairy manure by microelectrolysis in electric and magnetic fields. Renewable Energy. Vol. 146 p. 2758–2765. DOI 10.1016/j.renene.2019.06.050.
  • RADHAKRISHNAN R. 2019. Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiology and Molecular Biology of Plants. Vol. 25 p. 1107–1119. DOI 10.1007/s12298-019-00699-9.
  • RASHEED K.A., SHLAHI S.A., ISMAIL H.H., AHMAD M.U.A. 2018. The effects of magnetic water treatment for improving germination of some medicinal plants. Journal of Biotechnology Research Center. Vol. 12. Iss. 2 p. 61–65.
  • REZAEI H., KHILKEVICH V., YONG S., STUTTS D.S., POMMERENKE D. 2020. Mechanical magnetic field generator for communication in the ULF range. IEEE Transactions on Antennas and Propagation. Vol. 68. Iss. 3 p. 2332–2339. DOI 10.1109/TAP.2019.2955069.
  • SARRAF M., KATARIA S., TAIMOURYA H., SANTOS L. O., MENEGATTI R. D., JAIN M., IHTISHAM M., LIU S. 2020. Magnetic field (MF) applications in plants: An overview. Plants. Vol. 9. Iss. 9, 1139. DOI 10.3390/plants9091139.
  • SHASHURIN M.M., PROKOPIEV I.A., FILIPPOVA G.V., ZHURAVSKAYA A.N., KORSAKOV A.A. 2017. Effect of extremely low frequency magnetic fields on the seedlings of wild plants growing in Central Yakutia. Russian Journal of Plant Physiology. Vol. 64. Iss. 3 p. 438–444. DOI 10.1134/ S1021443717030165.
  • TYE B.S., VYAS R.J. 2017. Desorption of harmful hydrocarbon compounds in soil using micron-sized magnetic particles and high-frequency magnetic fields. Heliyon. Vol. 3. Iss. 10, e00418. DOI 10.1016/j.heliyon.2017.e00418.
  • VASHISTH A., JOSHI D.K. 2017. Growth characteristics of maize seeds exposed to magnetic field. Bioelectromagnetics. Vol. 38. Iss. 2 p. 151–157. DOI 10.1002/bem.22023.
  • WANG Y., WEI H., LI Z. 2018. Effect of magnetic field on the physical properties of water. Results in Physics. Vol. 8 p. 262–267. DOI 10.1016/j.rinp.2017.12.022.
  • YALCIN F.S., ÖZDILEK Ş.Y., ALTAS R. 2020. The orientation of earthworms is influenced by magnetic fields. Turkish Journal of Zoology. Vol. 44. Iss. 2 p. 199–208. DOI 10.3906/zoo-1904-51.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1cbf6a5-a4a7-4b46-8945-5c0e08b8d343
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.