PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis and control of nonlinear vibration of autonomous vehicle passing through hybrid consecutive speed control humps

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to improve the safety and comfort of autonomous vehicles passing through the expressway, relevant departments of expressway construction often design and lay consecutive speed control humps (SCHs) with cross-sections of different shapes according to different road conditions, such as the combination of trapezoidal and sinusoidal SCHs. In this paper, we conduct a study about the nonlinear dynamic characteristics of the autonomous vehicle passing through hybrid SCHs. Firstly, a four-degree-of-freedom (4-DOF) nonlinear model of the vehicle suspension and the speed coupling excitation model under hybrid SCHs are established. Then the fourth-fifth order Runge–Kutta method is used to simulate the nonlinear system, and its nonlinear dynamic characteristics are analyzed. The results show that chaotic motion occurs when the vehicle passes through hybrid SCHs, and the speed range of chaotic motion is obtained. Then, a direct variable feedback control method is used to suppress the chaotic vibration of semi-active suspension vehicles, and the effect is verified by simulation experiments. Finally, this paper presents a multi-objective optimization model based on a genetic algorithm (GA) for active suspension vehicles. The optimization model selects the vertical displacement and pitching angle of the vehicle body as the objective function. The research results of this paper can provide information on the ride comfort’s optimization for autonomous vehicles passing through hybrid SCHs and on the design of vehicle suspension system.
Rocznik
Strony
art. no. e143643
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Chongqing Vocational Institute of Engineering, Chongqing 402260, PR China
  • College of Computer and Information Science, Chongqing Normal University, Chongqing 401331, PR China
autor
  • College of Computer and Information Science, Chongqing Normal University, Chongqing 401331, PR China
autor
  • College of Computer and Information Science, Chongqing Normal University, Chongqing 401331, PR China
autor
  • College of Computer and Information Science, Chongqing Normal University, Chongqing 401331, PR China
autor
  • Chongqing Vocational Institute of Engineering, Chongqing 402260, PR China
  • College of Computer and Information Science, Chongqing Normal University, Chongqing 401331, PR China
Bibliografia
  • [1] C. Wang, X. Zhao, R. Fu, and Z. Li, “Research on the comfort of vehicle passengers considering the vehicle motion state and passenger physiological characteristics: Improving the passenger comfort of autonomous vehicles,” Int. J. Environ. Res. Public Health., vol. 17, p. 6821, 2020, doi: 10.3390/ijerph17186821.
  • [2] Z. Zhenglong, S. Bin, L. Jiangang, D. Zhiguang, and H. Zhongbo, “Research on ride comfort performance of a metal tire,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 3, pp. 491–502, 2020, doi: 10.24425/bpasts.2020.133384.
  • [3] L. Zhao, J. Guo, Y. Yu, X. Li, and C. Zhou, “Simulation of nonlinear vibration responses of cab system subject to suspension damper complete failure for trucks,” Int. J. Model. Simul. Sci. Comput., vol. 11, no. 2, p. 2050017, 2020, doi: 10.1142/s1793962320500178.
  • [4] S. Liang, C.G. Li, Q. Zhu, and Q. Y. Xiong, “The influence of parameters of consecutive speed control humps on the chaotic vibration of a 2-DOF nonlinear vehicle model,” J. Vibroeng., vol. 13, no. 3, pp. 406–413, 2011.
  • [5] Q. Zhu and M. Ishitobi, “Chaos and bifurcation in nonlinear vehicle model,” J. Sound Vib., vol. 275, no. 3–5, pp. 1136–1146, 2004, doi: 10.1016/j.jsv.2003.10.016.
  • [6] A. Sezgin and Y. Z. Arslan, “Analysis of the vertical vibration effects on ride comfort of vehicle driver,” J. Vibroeng., vol. 14, no. 2, pp. 559–571, 2012, doi: 10.1016/j.jbiomech.2012.01.047.
  • [7] G. Litak, M. Borowiec, M. I. Friswell and W. Przystupa, “Chaotic response of a quarter car model forced by a road profile with a stochastic component,” Chaos Solitons Fractals, vol. 39, no. 5, pp. 2448–2456, 2009, doi: 10.1016/j.chaos.2007.07.021.
  • [8] G. Liu, K. Nonami, and T. Hagiwara, “Semi-active fuzzy sliding mode control of full vehicle and suspensions,” J. Vib. Control, vol.11, no. 8, pp. 1025–1042, 2008, doi: 10.1177/1077546305053399.
  • [9] S. Liang, Y. S. Sun, and Q. Zhu, “Ride comfort analysis of a nonlinear vehicle excited by the consecutive speed-control humps,” J. Vibroeng., vol. 15, no. 4, pp. 1656–1664, 2013.
  • [10] Z.Y. Yang, S. Liang and Q. Zhu, “Chaotic vibration and comfort analysis of nonlinear full-vehicle model excited by consecutive speed control humps,” Math. Probl. Eng., vol. 2014, pp. 1–8, 2014, doi: 10.1155/2014/370634.
  • [11] H. Gheibollahi and M. Masih-Tehrani, “Optimal speed control humps design based on driver comfort,” Int. J. Automot. Mech. Eng., vol. 18, no. 3, pp. 8941–8958, 2021, doi: 10.15282/ijame.18.3.2021.08.0685.
  • [12] J. Fakhraei, H.M. Khanlo, M. Ghayour, and K. Faramarzi, “The influence of road bumps characteristics on the chaotic vibration of a nonlinear full-vehicle model with driver,” Int. J. Bifurcation Chaos, vol. 26, no. 9, p. 1650151, 2016, doi: 10.1142/S0218127416501510.
  • [13] Z.Y. Yang, S. Liang and Y.S. Sun, “Vibration suppression of four degree-of-freedom nonlinear vehicle suspension model excited by the consecutive speed humps,” J. Vib. Control, vol. 22, no. 6, pp. 1560–1567, 2014, doi: 10.1177/1077546314543728.
  • [14] M. Deng, Z. Wu, Z. Yao and Y. Chen, “Unmanned aerial vehicle jamming resource scheduling based on parallel genetic algorithm with elite set,” J. Electron. Inf. Technol., vol. 44, pp. 2158–2165, 2022, doi: 10.11999/JEIT210349.
  • [15] W. Wang, M. Niu and Y. L. Song, “Integrated vibration control of in-wheel motor-suspensions coupling system via dynamics parameter optimization,” Shock Vib., vol. 2019, p. 3702919, 2019, doi: 10.1155/2019/3702919.
  • [16] P. Guo and J.H. Zhang, “Numerical model and multi-objective optimization analysis of vehicle vibration,” J. ZheJiang Univ.-Sci. A, vol. 18, no. 5, pp. 393–412, 2017, doi: 10.1631/jzusA1600124.
  • [17] W. Sun, Y. Li, J. Huang, and N. Zhang, “Efficiency improvement of vehicle active suspension based on multi-objective integrated optimization,” J. Vib. Control, vol. 23, pp. 539–554, 2017, doi: 10.1177/1077546315581731.
  • [18] R.R.M.R. da Silva, I.L. Reinaldo, D.P. Montenegro, G.S. Rodrigues, and E.D.R. Lopes, “Optimization of vehicle suspension parameters based on ride comfort and stability requirements,” Proc. Inst. Mech. Eng., Part D: J. Automob. Eng., vol. 235, pp. 1920–1929, 2021, doi: 10.1177/0954407020983057.
  • [19] Z.Y. Yang, L. Wang, F.T. Liu, and Z.J. Li, “Nonlinear dynamic analysis of constant-speed and variable-speed of autonomous vehicle passing uneven road,” J. Vibroeng., vol. 24, no. 4, pp. 726–744, 2022, doi: 10.21595/jve.2022.22250.
  • [20] Z.Y. Yang, S. Liang, Y. Sun, and Qin Zhu, “Chaotic vibration and control in nonlinear half-vehicle suspension under consecutive humps excitation,” 2014 International Conference on Advanced Mechatronic Systems, 2014.
  • [21] Z.Y. Yang, S. Liang, Y.S. Sun, and Q. Zhu, “Vibration suppression of four degree-of-freedom nonlinear vehicle suspension model excited by the consecutive speed humps,” J. Vib. Control, vol. 22, no. 6, pp. 1560–1567, 2016, doi: 10.1177/1077546314543728.
  • [22] G.W. Lee, M. Hyun, D.O. Kang, and S.J. Heo, “High-efficiency active suspension based on continuous damping control,” Int. J. Automot. Technol., vol. 23, no. 1, pp. 31–40, 2022, doi: 10.1007/s12239-022-0003-4.
  • [23] G. Tran, T. Pham, O. Sename, E. Costa, and P. Gaspar, “Integrated comfort-adaptive cruise and semi-active suspension control for an autonomous vehicle: An LPV approach,” Electronics, vol. 10, no. 7, pp. 813, 2021, doi: 10.3390/electronics10070813.
  • [24] L. Wang, Z.Y. Yang, X.D. Chen, R.X. Zhang, and Z. Yu, “Research on adaptive speed control method of an autonomous vehicle passing a speed bump on the highway based on a genetic algorithm,” Int. J. Mech. Sci., vol. 13, no. 2, pp. 647–657, 2022, doi: 10.5194/ms-13-647-2022.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1caf2c4-ed52-4a38-91e5-d61a00a85582
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.