Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Bacterial nanocellulose (BNC) is a nanofibrilar polymer produced by strains such as Gluconacetobacter xylinus, one of the best bacterial species which given the highest efficiency in cellulose production. Bacterial cellulose is a biomaterial having unique properties such as: chemical purity, good mechanical strength, high flexibility, high absorbency, possibility of forming any shape and size and many others. Such a large number of advantages contributes to the widespread use of the BNC in food technology, paper, electronic industry, but also the architecture in use. However, the greatest hopes are using the BNC in medicine. This text contains information about bacterial nanocellulose, its specific mechanical and biological properties and current applications.
Wydawca
Czasopismo
Rocznik
Strony
45--57
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
autor
- Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering, 11/12 Narutowicza, 80-233 Gdańsk, Poland
Bibliografia
- 1. Hansen N.: Hall–Petch relation and boundary strengthening, Scripta Materialia, 51 8 (2004) 801–806.
- 2. Świątek-Prokop J.: Theses Academy. Jan Dlugosz in Czestochowa, series: Technical Education and Informatics. 2012 z. VII, http://www.pneti.ajd.czest.pl/docs/tom7/art/js_a.pdf
- 3. Price R.L., Waid M.C., Haberstroh K.M., Webster T.J.: Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials 24 (2003) 1877.
- 4. Grabowska J.: Fulereny – przyszłość zastosowań w medycynie i farmacji, Gazeta Farmaceutyczna 6 (2008) 38.
- 5. Rupp R., Rosenthal S.L., Stanberry L.R.: VivaGel (SPL7013 Gel): a candidate dendrimer--microbicide for the prevention of HIV and HSV infection., Int. J. Nanomedicine, 2 (2007) 561.
- 6. Madani S.Y, Tan A., Dwek M., Seifalian A.M.: Functionalization of single-walled carbon nanotubes and their binding to cancer cells. Int. J. Nanomedicine. 7 (2012) 905.
- 7. Główka E., Sapin-Minet A., Leroy P., Lulek J., Maincent P.: Preparation and in vitro-in vivo evaluation of salmon calcitonin-loaded polymeric nanoparticles. J. Microencapsul. 27 (1) (2010) 25.
- 8. Wang X., Wei F., Liu A., Wang L., Wang J-C., Ren L., Liu W., Tu Q., Wang L.: Cancer stem cell labeling using poly(l-lysine)-modified iron oxide nanoparticles. Biomaterials. 33 (14) (2012) 3719.
- 9. Chang Y., Liu Y., Ho J., Hsu S., Lee O.: Amine surface modified superparamagnetic iron oxide nanoparticles interfere with differentiation of human mesenchymal stem cells. J. of Orthopaedic Research. 2 (2012) 1499-506.
- 10. Jędrzejczyk W., Nanotechnology in medycine, Meritum 2, (2006).
- 11. Donaldson L.: Nanosystem for effectively targeting glioblastoma: Biomaterials. Materials today, vol.14, 12 (2011) 576.
- 12. Masaoka S., Ohe T., Sakota N.: Production of cellulose from glucose by Acetobacter xylinum. J. Ferment. Bioeng. 75 (1993) 18–22.
- 13. Park J. K., Jung J. Y., Park Y. H.: Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol. Lett. 25 (24) (2003) 2055–2059.
- 14. Keshk S., Sameshima K.: Influence of lignosulfonate on crystal structure and productivity of bacterial cellulose in a static culture. Enzyme and Microbiol. Technology 40 (2006) 4–8.
- 15. Toda K., Asakura T., Fukaya M., Entani E., Kawamura Y.: Cellulose production by acetic acid-resistant Acetobacter xylinum J. Ferment. Bioeng. 84 (3) (1997) 228–231.
- 16. Bae S., Shoda M.: Statistical optimization of culture conditions for bacterial cellulose production using Box-Behnken design. Biotechnol. Bioeng. 90 (1) (2005) 20–28.
- 17. Premjet S., Premjet D., Ohtani Y.: The effect of ingredients of sugar cane molasses on bacterial cellulose production by Acetobacter xylinum ATCC 10245. Sen-I Gakkaishi 63 (8) (2007) 193–199.
- 18. Kong H. :Invention controls weavers of nanoscale biomaterials, Tech V. November 12 (2008) http://www.vtnews.vt.edu/story.php?relyear
- 19. Beck-Candanedo S., Roman M., Gray D. G.: Effect of Reaction Conditions on the Properties and Behavior of Wood Cellulose Nanocrystal Suspensions. Biomacromolecules. 6 (2005) 1048-1054.
- 20. Klemm D., Philipp B., Heinze T., Heinze U., Wagenknecht W.: Comprehensive Cellulose Chemistry Volume 1and 2. Wiley-VCH [ed]. Germany. (1998).
- 21. Klemm D., Heublein B., Fink H.P., Bohn A.: Cellulose: Fascinating Biopolymer and Sustainable Raw Material Biopolymers, Angew. Chem. Int. [ed]. 44 3358 (2005).
- 22. Klemm D., Schmauder H. P., Heinze T., Steinbüchel A., Wiley-VCH [ed]. Germany. p. 257. (2002).
- 23. Hon D. N. S., Shiraishi N.: Wood and Cellulosic Chemistry 2nd. Marcel Dekker Inc. [ed]. New York. (2001).
- 24. Kamide K.: Cellulose and Cellulose Derivatives. Elsevier. Netherlands (2005).
- 25. Zugenmaier P.: Crystalline Cellulose and Cellulose Derivatives. Springer-Verlag. Heidelberg (2007).
- 26. Brown R. M., Saxena I. M.: Cellulose: Molecular and Structural Biology. Springer. Netherlands (2007).
- 27. Helenius G., Bäckdahl H., Bodin A., Nanmark U., Gatenholm P., Risberg B.: In vivo biocompatibility of bacterial cellulose. J. Biomed. Mater. Res. A. 76 (2) (2006) 431.
- 28. Esguerra M., Fink H., Laschke M. W., Delbro D., Jeppsson A., Gatenholm P., Menger M. G., Risberg B.: Polysaccharides as Cell Carriers for Tissue Engineering: the Use of Cellulose in Vascular Wall Reconstruction. J. Biomed. Mater. Res. Part A. (2009).
- 29. Yamanaka S., Watanabe K., Kitamura N., Iguchi M., Mitsuhashi S., Nishi Y., Uryu M.: The structure and mechanical properties of sheets prepared from bacterial cellulose. J. Mater. Sci. 24 (1989) 3141.
- 30. Cannon R. E., Anderson S. M.: Overview of Bacterial Cellulose Production and Application. Critical Reviews in Microbiology 17 (1991) 435.
- 31. Czaja W., Krystynowicz A., Bielecki S., Brown R. M.: Celuloza bakteryjna jako nanobiomateria. Biomaterials 27 (2006)145.
- 32. Czaja W. K., Young D. J., Kawecki M., Brown R. M.: The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8 (2007) 1.
- 33. Lanyon Y. H., Marrazza G, Tothill IE, Mascini M: Benzene analysis in workplace air using an FIA-based bacterial biosensor. Biosensors and Bioelectronics, 20 (2005) 2089–96.
- 34. Dourado F., Gama M.: Bacterial Nano Cellulose - innovative Biopolymer in Research and Application. 3rd scientific meeting of the institute for biotechnology and bioengineering. Lisboa. March (2012).
- 35. Andrade F.K., Pertile R.A.N., Dourado F., Gama F.M.: Bacterial Cellulose: properties, production and applications in Cellulose: Structure and Properties. Derivatives and Industrial Uses. Nova Science Publishers. 18 (2010) 427-458.
- 36. Nogi M., Yano H.: Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv. Mater. 20 (2009) 1849.
- 37. Klemm D., Schumann D., Kramer F., Heßler N., Hornig M., Schmauder H. P., Marsch S., Nanocelluloses as Innovative Polymers in Research and Application. Adv. Polym. Sci. 205 (2006) 49.
- 38. Grande C.J., Torres F.G., Gomez C.M., Troncoso O.P, Canet-Ferrer J., Martinez-Pastor J.: Morphological characterisation of bacterial Cellulose-Starch nanocomposites. Polym. Composites. 16 (2008) 181–185.
- 39. Bäckdahl H., Helenius G., Bodin A., Johansson B., Nanmark U., Risberg B., Gatenholm P., Bacterial Cellulose as Potential Scaffold for Tissue Engineered Blood Vessels: Mechanical Properties and Cell Interactions. Biomaterials 27 (2006) 2141.
- 40. Yano H., Sugiyama J., Nakagaito A.N., Nogi M., Matsura T., Hikita H., Handa K., Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers. Adv. Mater. 17 (2005) 153.
- 41. Gatenholm P., Klemm D.: Bacterial nanocellulose as a renewable material for biomedical Applications. mrs bulletin. (2010) 35.
- 42. Ramana K. V., Singh L.: Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World J. Microbiol. Biotechnol. 16 (3) (2000) 245–248.
- 43. Bacterial Cellulose. October 29. 2010. http://www.warsawvoice.pl. date of download: (2012).
- 44. Majda B., Bowil Biotech, www.biotechnologia.pl. date of download: (2012).
- 45. Bielecki S., Kalinowska H.: Biotechnology nanomaterials. Post. Mikrobiologii, 47 (2008) 163-169.
- 46. Dinand E., Chanzy H., Vignon M. R.: Parenchymal cell cellulose from sugar beet pulp: preparation and properties. Cellulose. 3 (1996) 183-188.
- 47. Bijak M.: Sztuczna zastawka serca, www.echirurgia.pl. date of download: (2016).
- 48. Avery N. C., Sims T. J., Warkup C., Bailey A. J.: Collagen cross-linking in porcine m. longissimus lumborum: absence of a relationship with variation in texture at pork weight. Meat Sci. 42 (1996) 355-369.
- 49. Dinand E., Vignon M. R.: Isolation and NMR characterization of a (4-O-methyl-D-glucurono)-D-xylan from sugar beet pulp. Carbohydr. Res. 330 (2001) 285-288.
- 50. Shah J., Brown M. R. J. R.: Towards electronic paper. Appl. Microbiol. Biotechnol. 66 (2005) 352-355.
- 51. Ślęzak A., Kucharzewski M., Jasik-Ślęzak J.: The characteristics of medical dressings bacterial cellulose membrane. Department of Biology and Biophysics, University of Czestochowa. Department of General Surgery, Medical University of Silesia in Bytom. http://www.dbc.wroc.pl/Content/2112/202_Slez.pdf. date of download: (2016).
- 52. Baptista A., Ferreira I., Borges J.: Cellulose-Based Bioelectronic Devices. http://dx.doi.org/10.5772/56721. date of download: (2016).
- 53. Finkenstadt V. L.: Natural polysaccharides as electroactive polymers. Appl. Microbiol. Biotechnol. 67 (2005) 735-745.
- 54. Xiank Q., Kim J. S., Lee Y. Y.: A comprehensive kinetic model for di lute-acid hydrolyssys of cellulose, App. Biochem. Biotechnol. 105-108 (2003) 337-357.
- 55. Ogawa R., Tokura S.: Preparation of bacterial cellulose containing N-acetylglucosamine residues. Carbohydr. Polym. 19 (1992) 171-178.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1ca4dad-4499-4230-a320-295020d12ce0