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INTRODUCTION

Climate change, driven predominantly by 
anthropogenic activities, poses one of the most 
pressing challenges of our time. Central to this 
phenomenon is the global carbon stock, encom-
passing carbon stored in forests, soils, oceans, 
and the atmosphere (Slameršak et al., 2024). This 
carbon cycle is intricately linked with climate 
dynamics, as increased carbon emissions lead to 

elevated atmospheric CO2 levels, contributing to 
global warming and climatic alterations (IPCC, 
2022). Urban metropolitan areas, characterized 
by their dense populations and extensive infra-
structure, are significant contributors to global 
carbon emissions. These urban centers not only 
emit large quantities of carbon dioxide through 
industrial activities, transportation, and energy 
consumption but also face unique vulnerabilities 
to climate change impacts. As hubs of economic 
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ABSTRACT
The quantification of carbon stocks has emerged as a critical global issue due to its vital role in ecosystem services 
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years of annual data, indicate a 24% increase in carbon stocks within UGS ecosystems. However, year-to-year 
transitions showed significant fluctuations, with a 19% decrease in carbon stocks from 2017 to 2019, and notable 
increases of 25% and 40% during the 2015–2016 and 2019–2020 periods, respectively. Spatially, carbon stock 
fluctuations were most pronounced in agricultural ecosystems, which are vulnerable to climate change, especially 
during El Niño-Southern Oscillation (ENSO) and positive Indian Ocean Dipole (IOD) events that influenced 
vegetation dynamics, particularly in low-density areas. The most substantial contributors to carbon stocks, exhibit-
ing relatively stable and adaptive patterns to climate change, were mangrove and urban forest ecosystems. From 
a state-of-the-art perspective, this research addresses a gap in the literature where previous studies focused on 
calculating carbon for specific periods using various model approaches. Our implementation of a new time series 
analysis demonstrates that carbon stocks are dynamic, as evidenced by our findings. The results underscore the 
importance of preserving urban forest ecosystems, which play a significant role in climate change mitigation and 
the reduction of urban greenhouse gas emissions.
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activity and human settlement, they play a dual 
role in both exacerbating and mitigating climate 
change (Seto and Shobhakar, 2014).

Urbanization and the rapid expansion of 
built-up land are common issues in major cities 
worldwide, significantly impacting the environ-
ment, including increased air pollution (Liang et 
al., 2019; Sarker et al., 2024). Denpasar, the cen-
ter of tourism, government, economy, education, 
and other activities in Bali Province, Indonesia 
(Rahayu et al., 2018), exemplifies this phenom-
enon. Rapid growth in this area has led to the 
emergence of informal settlements, particularly 
around commercial zones, green belts, rivers, and 
perceived unclaimed lands. Over time, these ar-
eas have developed into dense settlements, lead-
ing to environmental degradation (As-syakur et 
al., 2023; As-syakur et al., 2010).

This situation has resulted in a reduction of 
urban green spaces, contributing to increased 
greenhouse gas emissions (Liu and Russo, 2021). 
The dynamics of land use and land cover change 
have become critical topics, garnering significant 
attention due to various global issues (Nedd et 
al., 2021; Pandey et al., 2021). Recent research 
has found that the reduction of urban vegetation 
contributes to the rise and spread of urban tem-
peratures and is correlated with carbon emissions 
(Fattah et al., 2021; Zhang et al., 2023). Urban 
green spaces in city forest ecosystems play a cru-
cial role in sequestering greenhouse gases by con-
verting atmospheric carbon dioxide (CO2) into 
carbon (C) stored within forest ecosystem com-
ponents such as trees, belowground biomass, and 
soil (Bherwani et al., 2024). Through photosyn-
thesis, forests absorb CO2 from the atmosphere 
and store it as forest biomass. Forest biomass 
contains about 80% of all terrestrial carbon above 
ground and about 40% of all terrestrial carbon 
(Lubis et al., 2023). Land conversion, defores-
tation, forest degradation, and reforestation can 
alter land cover patterns and change the composi-
tion of terrestrial biomass (Merino et al., 2023).

Our case study was conducted in the central 
capital region of Bali Province, using time se-
ries data from 2014 to 2022. During this period, 
there was significant urban expansion (Adnyana 
et al., 2023), a drastic increase in land surface 
temperature (Sunarta et al., 2022), and global 
climate change effect (Kurniadi et al., 2021; Su-
listiyono et al., 2023). In this area, limited green 
areas exacerbate air pollution issues, highlighting 
the ineffectiveness of urban regions in mitigating 

greenhouse gas emissions (Sunarta and Saifulloh, 
2022a). We hypothesize that these phenomena 
impact vegetation dynamics and carbon stocks, 
which have not yet been fully understood in urban 
ecosystem areas.

Previous studies primarily focused on devel-
oping carbon stock models through the integra-
tion of terrestrial field measurements, such as the 
commonly used Allometric approach, with remote 
sensing image sensors using data from a single pe-
riod (Askar et al., 2018; Choudhury et al., 2021), 
However, their findings have not been fully appli-
cable over extended periods, as weather factors are 
inherently variable and influence the biophysical 
and vegetative cover characteristics. To address 
this research gap, we examined the dynamics of 
carbon stock using time series data, providing new 
insights into carbon dynamics and future environ-
mental management and mitigation efforts.

In the province of Bali, previous researchers 
have conducted land and environmental conser-
vation efforts in highland areas, where land use is 
dominated by agriculture and forests. These stud-
ies focused on identifying soil and environmental 
degradation (Bhayunagiri and Saifulloh, 2022; 
Kartini et al., 2023; Trigunasih et al., 2023a) and 
disaster mitigation (Diara et al., 2022; Suyarto 
et al., 2023; Trigunasih et al., 2023; Trigunasih 
and Saifulloh, 2022). By addressing the research 
gap in coastal urban areas, we aim to contribute 
a valuable research database that will benefit aca-
demics, government agencies, and stakeholders 
for regional-scale environmental management.

DATA AND METHODS

Research case study

Denpasar City, the capital of Bali Province, 
Indonesia, is spatially located on the southern 
coast with an elevation ranging between 0–75 
meters above sea level and predominantly flat 
terrain categorized as 0-8% slope. Geographi-
cally, it lies between 8°36’00”S – 8°45’00”S and 
115°12’00”E – 115°15’00”E as shown in Figure 
1. The total area of the city is 127.78 km², divided 
into four administrative districts: South Denpasar 
with the largest area comprising 40%, followed 
by East Denpasar (20%), North Denpasar (21%), 
and West Denpasar (19%). From 2020 to 2022, 
the population of this city consistently increased, 
with 725,314 people in 2020, 726,600 in 2021, 
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726,800 in 2022, and 660,980 in 2023. Besides 
serving as the capital, this area is also a hub for 
tourism activities, with the number of tourist vis-
its increasing at an average growth rate of 12% 
per year (Statistik, 2024).

Urban green space ecosystem 

Denpasar City boasts urban green space 
(UGS) with various ecosystems, including man-
grove forests along the coast, urban forests in 
government and tourism areas, and agricultural 
land. The dominant species in the mangrove for-
ests are Soneratia alba and Rhizophora mucrona-
ta, along with four other species: Avicennia ma-
rina, Xylocarpus granatum, Bruguiera gymnori-
za, Thespesia populnea, and Ceriops decandra 
(Wiradana et al., 2021). In the urban forest eco-
system, common street-shading tree species in-
clude Lagerstroemia speciosa, Samanea saman, 
Plumeria rubra, Callistemon viminalis, Cerbera 
manghas, and Polyalthia longifolia (Krisnan-
dika et al., 2019). The agricultural ecosystem 
commonly features Oryza sativa during the wet 
season and Zea mays and Glycine max during the 
dry season. Horticultural and fruit commodities 
typically found in agricultural land include Ama-
ranthus viridis, Brassica rapa, Citrullus lanatus, 
and Cucumis melo (Sentana et al., 2021). All spe-
cies within these UGS areas contribute to urban 
carbon stock values and greenhouse gas absorp-
tion, forming the basis for our time-series com-
putation using remote sensing data.

Data used

Landsat 8, launched by NASA in 2013, is a 
crucial component of the Landsat program, de-
signed to monitor Earth’s surface. It is equipped 
with two main sensors: the Operational Land 
Imager (OLI) and the thermal infrared sensor 
(TIRS). The OLI captures data in nine spectral 
bands, ranging from the visible to the shortwave 
infrared (SWIR) spectrum, with a spatial resolu-
tion of 30 meters for most bands and 15 meters 
for the panchromatic band (Table 1). The TIRS, 
in contrast, measures thermal infrared radiation 
in two bands with a resolution of 100 meters 
(USGS, 2015).

These high-resolution, multispectral images 
are invaluable for measuring carbon stock. Veg-
etation indices such as the normalized difference 
vegetation index (NDVI) and the enhanced veg-
etation index (EVI), derived from Landsat 8’s 
spectral data, are commonly used to assess vege-
tation health and density. NDVI, calculated using 
the red and near-infrared (NIR) bands, assists in 
estimating biomass by identifying areas with high 
photosynthetic activity (Tucker, 1979).

Additionally, the SWIR bands aid in detecting 
moisture content in vegetation, which is crucial 
for accurate biomass and carbon stock estimation. 
By combining data from various spectral bands, 
researchers can create detailed maps of forest 
cover, identify deforestation and degradation ar-
eas, and monitor changes over time. The thermal 
bands of TIRS also provide information on land 

Figure 1. The research location is situated in the central part of Indonesia, 
within Bali Province, specifically in the city of Denpasar
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surface temperature, which can be correlated with 
vegetation stress and productivity (Roy et al., 2014). 
Thus, Landsat 8’s advanced imaging capabilities fa-
cilitate comprehensive monitoring and assessment 
of terrestrial carbon stocks, contributing to a better 
understanding and management of carbon sequestra-
tion and greenhouse gas emissions.

Satellite image processing 

Radiometric correction

The first step is radiometric correction, aimed 
at removing sensor noise and correcting for dif-
ferences in pixel sensitivity. This process ensures 
that the obtained reflectance values are consis-
tent and accurate, which is crucial for quantita-
tive analysis. Radiometric calibration converts 
the digital number (DN) values to physical val-
ues, specifically top-of-atmosphere (TOA) reflec-
tance. This conversion is essential for standard-
izing the data across different scenes and dates, 
allowing for reliable comparison and analysis 
(Vermote et al., 2016). The TOA reflectance can 
be calculated using the following Equation 1.

	

 
𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 

𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 𝐷𝐷𝑁𝑁 + 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠( 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 )

  
 

(1) 
 
 

𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (2) 
 
 

𝐿𝐿 = 𝑀𝑀 × 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴 (3) 
 
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅 (4) 

 
 

𝐴𝐴𝐴𝐴𝐴𝐴 = 6,445.014𝑥𝑥2.390 (5) 
 

	 (1)

where:	Mreflectance – the multiplicative rescaling 
factor, Areflectance – the additive rescaling 
factor, and θsun – the solar elevation angle. 

Atmospheric correction 

The dark object subtraction (DOS) method 
for atmospheric correction is a straightforward 
technique used in remote sensing to mitigate 

atmospheric effects in satellite imagery (Chavez, 
1996). It operates on the premise that very dark ob-
jects, such as deep water bodies or shadows, exhib-
it near-zero reflectance. The process involves iden-
tifying these dark pixels in the image and calculat-
ing their average radiance value to estimate the at-
mospheric contribution (Equation 2). This value is 
then subtracted from the radiance measured by the 
sensor across the entire image. Applied particular-
ly to Landsat 8 OLI/TIRS sensor data, this method 
minimizes atmospheric effects, resulting in more 
accurate surface reflectance values and enhancing 
the reliability of subsequent analysis (Equation 3).
	

 
𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 

𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 𝐷𝐷𝑁𝑁 + 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠( 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 )

  
 

(1) 
 
 

𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (2) 
 
 

𝐿𝐿 = 𝑀𝑀 × 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴 (3) 
 
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅 (4) 

 
 

𝐴𝐴𝐴𝐴𝐴𝐴 = 6,445.014𝑥𝑥2.390 (5) 
 

	 (2)
where: LTOA – the top-of-atmosphere reflectance 

after atmospheric correction, Lsensor – the 
radiance measured by the sensor, Ldark – 
the radiance of the dark object (assumed 
the near zero reflectance)

	

 
𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 

𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 𝐷𝐷𝑁𝑁 + 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠( 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 )

  
 

(1) 
 
 

𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (2) 
 
 

𝐿𝐿 = 𝑀𝑀 × 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴 (3) 
 
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅 (4) 

 
 

𝐴𝐴𝐴𝐴𝐴𝐴 = 6,445.014𝑥𝑥2.390 (5) 
 

	 (3)
where:	L – the spectral radiance, M – the radiance 

multiplicative scaling factor, Qcal – the 
quantized and calibrated standard product 
pixel value (digital number), A –  the radi-
ance additive scaling factor. 

Calculation of vegetation indices

To determine the distribution of vegetation in 
the urban area of Denpasar, the NDVI was ana-
lyzed. NDVI is calculated using the NIR and Red 
bands proposed by (Rouse et al., 1974) as calcu-
lated in Eq. 4:

	

 
𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 

𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 𝐷𝐷𝑁𝑁 + 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠( 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 )

  
 

(1) 
 
 

𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (2) 
 
 

𝐿𝐿 = 𝑀𝑀 × 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴 (3) 
 
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅 (4) 

 
 

𝐴𝐴𝐴𝐴𝐴𝐴 = 6,445.014𝑥𝑥2.390 (5) 
 

	 (4)

Table 1. Specifications of Landsat 8 sensors
Landsat 8 Bands Wavelength (µm) Resolution (m)

Band 1 - Coastal aerosol 0.43–0.45 30

Band 2- Blue 0.45–0.51 30

Band 3 - Green 0.53–0.59 30

Band 4 - Red 0.64–0.67 30

Band 5 - Near Infrared (NIR) 0.85–0.88 30

Band 6 - SWIR 1 1.57–1.65 30

Band 7 - SWIR 2 2.11–2.29 30

Band 8 - Panchromatic 0.50–0.68 15

Band 9 - Cirrus 1.36–1.38 30

Band 10 – Thermal Infrared Sensor (TIRS) 1 10.6–11.19 100

Band 11 - Thermal Infrared Sensor (TIRS) 2 11.5–12.51 100
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where:	NIR – the reflectance value from the near-
infrared band (Band 5 on Landsat 8), and 
Red is the reflectance value from the red 
band (Band 4 on Landsat 8).

The NIR band is highly sensitive to green 
biomass because plant leaves reflect a significant 
portion of light at this wavelength, while the Red 
band is situated at wavelengths where chlorophyll 
in plant leaves absorbs light for photosynthesis. 
This combination makes NDVI effective for eval-
uating vegetation health and density. High NDVI 
values indicate healthy, dense vegetation, while 
lower values may indicate less healthy vegetation 
or non-vegetated areas. Using Landsat 8 imagery, 
with spatial resolution (30 meters for Bands 4 
and 5), provides an advantage in detecting small 
changes in vegetation, which is useful for urban 
carbon analysis and green space management.

Computation of above ground carbon

Subsequently, the NDVI results are used to 
calculate above ground carbon (AGC) based on a 
remote sensing approach proposed by (Yao et al., 
2015) as calculated in Eqation 5:

	

 
𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 

𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 𝐷𝐷𝑁𝑁 + 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠( 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 )

  
 

(1) 
 
 

𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (2) 
 
 

𝐿𝐿 = 𝑀𝑀 × 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴 (3) 
 
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅 (4) 

 
 

𝐴𝐴𝐴𝐴𝐴𝐴 = 6,445.014𝑥𝑥2.390 (5) 
 

	 (5)

Yao et al. (2015) developed this method based 
on data from 240 sampling plots. Information ob-
served in each plot included species, the number 
of each species, diameter at breast height (DBH), 
and height for trees; for shrubs, species, the num-
ber of each species, basal diameter, canopy diam-
eter, and height were recorded. Field data were 
integrated with remote sensing data from Landsat 
imagery to derive a carbon estimation formula. 
NDVI showed a good correlation (R² = 0.71) 
with AGC stock in urban green spaces. Other 

vegetation indices e.g. difference vegetation index 
(DVI), ratio vegetation index (RVI), soil-adjusted 
vegetation index (SAVI), modified soil-adjusted 
vegetation index (MSAVI), and renormalized 
difference vegetation index (RDVI) had lower 
correlation coefficients compared to the NDVI. 
NDVI is suitable for predicting carbon in urban 
areas with low green space canopy density (Guo 
et al., 2024). Therefore, this equation is used to 
study above ground carbon dynamics in the green 
spaces of Denpasar City, based on its development 
for urban areas with sparse vegetation and its use 
of the same sensor product from Landsat.

RESULTS AND DISCUSSION

Vegetation indices 

The statistical values of the vegetation spectral 
index in the study area range from -0.99 to 0.99 (see 
Table 2). Figure 2 depicts the variation in the aver-
age vegetation index in Denpasar City from 2014 
to 2022. In 2015, the average vegetation index 
in Denpasar City decreased to 0.43 compared to 
2014, indicating a decline in vegetation greenness. 
However, in 2016, the average vegetation index 
increased to 0.48, indicating a significant improve-
ment in vegetation greenness. Conversely, in 2019, 
the average vegetation index fell again, even lower 
than in 2015, highlighting a marked reduction in 
vegetation greenness. The spatial patterns of NDVI 
over a decade have shown considerable variability. 
NDVI values lower than 0.625 are typically asso-
ciated with non-vegetated areas such as water bod-
ies, built-up land, vacant lots, and beach sand. The 
most significant changes in vegetation dynamics 
were observed in the central to northern parts of the 
study area, where agricultural land use is prevalent.

Table 2. Statistical values of vegetation indices from 2014 to 2022
No Years Min Max Mean SD

1 2014 -0.91 0.96 0.48 0.22

2 2015 -0.95 0.96 0.46 0.21

3 2016 -0.88 0.96 0.48 0.22

4 2017 -0.92 0.96 0.46 0.21

5 2018 -0.99 0.95 0.45 0.20

6 2019 -0.93 0.98 0.41 0.20

7 2020 -0.89 0.96 0.44 0.21

8 2021 -0.88 0.96 0.45 0.22

9 2022 -0.87 0.99 0.46 0.22
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Agricultural land use, such as rice paddies, is 
notably dynamic, influenced by planting seasons, 
crop rotation, and cultivated agricultural commod-
ities. The study area is predominantly planted with 
rice, a food commodity with highly variable veg-
etation dynamics depending on the planting sea-
son. During the transition from soil preparation to 
the next rice planting, the fields undergo flooding, 
and some areas temporarily become vacant land. 
In the generative phase of rice growth, the vege-
tation is lush and green, resulting in high NDVI 
values. Additionally, the presence of other crops 
like corn contributes to high spectral reflectance 
in the near-infrared (NIR) wavelength. Healthy 
plants with adequate chlorophyll content reflect 
light in the NIR wavelength (0.85–0.88 µm) while 
chlorophyll absorbs light in the Red wavelength 
(0.64–0.67 µm), resulting in lower reflectance 
(Yang, 2020). In contrast, unhealthy plants with 
low chlorophyll content absorb NIR wavelengths. 

Overall, the coastal UGS in the southern part 
of the study area exhibit relatively uniform vege-
tation density, largely due to the presence of man-
grove ecosystems. These ecosystems maintain a 
consistent level of vegetation cover and contrib-
ute to the overall stability of the NDVI readings 
in this region. NDVI derived from Landsat 8 
provides a valuable tool for monitoring vegeta-
tion dynamics over time. It effectively highlights 

the variability and changes in vegetation cover, 
especially in agricultural areas, where seasonal 
activities and crop types significantly influence 
the NDVI values. The consistency in vegetation 
density in coastal UGS areas underscores the im-
portance of mangrove ecosystems in maintaining 
ecological stability.

Urban green space mapping

UGS were delineated using a threshold ap-
proach with NDVI values greater than 0.625, 
validated against high-resolution Google Earth 
satellite images. Areas not meeting this thresh-
old were classified as non-vegetated and exclud-
ed from the calculation of above-ground carbon 
(AGC) values, as detailed in subsequent sections. 
The extent of UGS in the study area showed dy-
namic changes, dependent on NDVI values. The 
largest UGS area was identified in 2016, covering 
3,566.34 hectares (28.13%), while the smallest 
was in 2019, covering 2,028.69 hectares (16%).

Other researchers have reported similar find-
ings using different satellite imagery and meth-
odologies. For instance Marpaung et al. (2022) 
reported UGS areas of 3,615.14 hectares in 2016 
and 3,031.45 hectares in 2021. Additionally, 
(Wirayuda et al., 2023) using Landsat 8 satellite 
data from 2022 and a supervised classification 

Figure 2. Spatial distribution of vegetation indices from 2014–2022
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technique, identified 2,822 hectares of UGS. 
Over nine years of remote sensing observations, 
the average UGS area was found to be 23%.The 
largest percentage was in 2016 at 28%, and the 
smallest in 2019 at 16%. These findings align 
with the Indonesian standard for UGS proportion, 
which mandates that 30% of urban areas be green 
spaces, comprising 20% public and 10% private 
green spaces (Figure 3). This study primarily 
mapped 20% of public green spaces, as private 
green spaces with vegetation less than 30 meters 
per pixel were not captured due to the resolution 
limits of the satellite imagery used. (Table 3)

Above ground carbon

Our study focused on the carbon stock poten-
tial specifically within vegetated UGS areas. The 
lowest carbon stock values ranged from less than 
2 tons of carbon per pixel to more than 5 tons of 
carbon per pixel, with each pixel representing 30 
meters, in line with the spatial resolution of Land-
sat 8 imagery. The spatial distribution of carbon 
stock is shown in Figure 4, highlighting the high-
est carbon stock areas along the coastal regions 
each year. The calculation of AGC within UGS ar-
eas revealed that South Denpasar had the highest 
AGC potential at 51,988 tons of carbon, followed 
by East Denpasar (20,439 tons), North Denpasar 

(20,211 tons), and West Denpasar (9,674 tons), 
as illustrated in Figure 5. The significant carbon 
stock in South Denpasar is primarily due to the 
presence of mangrove ecosystems (Figure 6b).

Candra et al. (2016) identified eleven man-
grove species in the same study area, including 
Rhizophora mucronata, Rhizophora stylosa, 
Rhizophora apiculata, Avicennia marina, Avicen-
nia officinalis, Sonneratia alba, Sonneratia case-
olaris, Bruguiera gymnorrhiza, Bruguiera cylin-
drica, Xylocarpus granatum and Ceriops tagal. 
The total carbon stock in these mangroves was es-
timated to be 35,349.87 tons, with dominant spe-
cies including Rhizophora apiculata, Rhizophora 

Table 3. Data summary on the extent of UGS in 
Denpasar City

Year Pixels Area (ha) Area (%)

2014 28891 2,600.19 20.51

2015 32293 2,906.37 22.92

2016 39626 3,566.34 28.13

2017 34798 3,131.82 24.70

2018 28948 2,605.32 20.55

2019 22541 2,028.69 16.00

2020 31907 2,871.63 22.65

2021 33208 2,988.72 23.57

2022 35010 3,150.90 24.85

Figure 3. Spatial distribution of urban green space from 2014 to 2022
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mucronata, and Sonneratia alba. A recent study 
evaluated the carbon storage and sequestration 
potential of three mangrove ecosystems (Brugui-
era, Rhizophora, and Sonneratia), finding a total 
capacity of 1.5 million tons of CO2 with an an-
nual rate of 94,573.6 tons of CO2 per year. This 
research was conducted in the Mangrove Benoa 
Bay ecosystem, spanning the administrative re-
gions of Denpasar City and Badung Regency 
(Sugiana et al., 2024). Another study, integrating 
field measurements with active remote sensing 
sensor, estimated the carbon stock potential in 

the Benoa Bay mangroves to be 209,027.28 tons 
of carbon, sequestering 767,130.11 tons of CO2, 
with a CO2 absorption rate of 3.87 tons per hec-
tare (Mahasani et al., 2021). In the same area, oth-
er researchers found that the species Rhizophora 
mucronata was relatively dominant, and at cer-
tain observation spots, it produced a carbon stock 
of 175.77 tons/ha (Suardana et al., 2023).

Additionally, urban forests located at the bound-
ary of South and East Denpasar contribute signifi-
cantly to carbon sequestration, as shown in Figure 
6b. A study in Jakarta, Indonesia, reported that urban 

Figure 4. Time series map of carbon stocks in urban green space

Figure 5. Graph of total carbon stocks per district from 2014 to 2022
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trees sequester approximately 184.8 metric tons of 
carbon per year (Aulia et al., 2023). Dominant tree 
species in Indonesian urban forests include Ptero-
carpus indicus, Delonix regia, Polyalthia longifolia, 
Lagerstroemia speciosa, Mimusops elengi, Samanea 
saman, Tectona grandis, Ficus benjamina, Mangif-
era indica, and Tamarindus indica, generally con-
stituting less than 10% of UGS (Fitria et al., 2022). 
Preserving urban forests is crucial to prevent land-
use changes, as demonstrated by a study in Chang-
chun, China, where urban forests offset about 2.11% 
of carbon emissions in 2000, but this figure dropped 
to 0.88% in 2019 due to increased emissions from 
urbanization (Guo et al., 2024).

Transition of above ground carbon

Over a nine-year period, the total carbon stock 
within the UGS ecosystem exhibited significant 

variability. The highest carbon stock was record-
ed in 2016 at 125,588.78 tons, while the lowest 
was in 2019 at 73,350.48 tons, with an average of 
102,311.82 tons across the period (Figure 7). The 
trend in carbon stock was distinctive: it increased 
from 2014 to 2016, gradually declined from 
2016 to 2018, and then rose again from 2020 
to 2022. A significant increase in carbon stock 
was observed between 2019 and 2020, reaching 
40%. Another notable increase of 25% occurred 
between 2015 and 2016. Smaller increases, less 
than 8%, were noted during the transitions from 
2014 to 2015, 2021 to 2022, and 2020 to 2021. 
Conversely, a decline in carbon stock was ob-
served between 2016 and 2019, with reductions 
of -11.52% and -19% respectively (Figure 8). 
These findings suggest that factors such as veg-
etation density, plant health, and spatial distribu-
tion significantly influence carbon stock.

Figure 6. (a) Photo view of UGS tree canopy along urban streets (8°40’13.03”S, 115°13’48.76”E), (b) 
mangrove ecosystem in the southern coastal area of Denpasar (8°43’42.40”S, 115°11’33.96”E)

Figure 7. Graph of total carbon stocks in Denpasar City from 2014 to 2022
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Climate dynamics on carbon stocks

The dynamics of carbon stocks in urban eco-
system areas are justified by the influence of ex-
treme climate change dynamics, as shown in Fig-
ure 9, which describes the relationship between 
rainfall variability and land surface temperature 
(LST). Data from the rainfall estimates from Rain 
Gauge and Satellite Observations (CHIRPS) and 
the MODIS Land Surface Temperature and Emis-
sivity (MOD11A1.061) indicate that the average 
monthly rainfall and LST patterns are highly dy-
namic each year. The lowest rainfall was con-
secutively detected in 2015 and 2019, with val-
ues of 95.83 mm/month and 96.44 mm/month, 
respectively. This relatively low rainfall influ-
enced an increase in LST in both 2015 and 2019, 
with corresponding values of 37.52 °C and 36.68 

°C. On the other hand, an increase in relatively 
high rainfall was observed in 2016 and 2021, at 
202.20 mm/month and 200.94 mm/month, re-
spectively, leading to a reduction in LST to 33.74 
°C and 33.64 °C. Overall, the rainfall patterns in 
the study area align with the dynamics of carbon 
stocks (Figure 7) and are inversely related to tem-
perature variability.

Climate variability, particularly in terms of 
rainfall and temperature, significantly influences 
vegetation dynamics and, consequently, carbon 
stocks in urban green spaces. Variability in rain-
fall and temperature impacts the growth, health, 
and distribution of vegetation, which are criti-
cal determinants of carbon sequestration. During 
periods of low rainfall, such as those observed 
in 2015 and 2019, water stress can inhibit plant 
growth and reduce biomass accumulation, leading 

Figure 8. Transition of carbon stock changes over nine years

Figure 9. Dynamics of climate change in urban green spaces over nine years as 
indicated by average rainfall and land surface temperature (LST) data
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to lower carbon sequestration rates. High temper-
atures further exacerbate this stress by increasing 
evapotranspiration rates, causing soil moisture 
depletion and adversely affecting plant physi-
ological processes. This combination of low rain-
fall and high temperatures can lead to decreased 
vegetation cover and reduced carbon stocks. Con-
versely, higher rainfall, as seen in 2016 and 2021, 
can enhance plant growth by providing sufficient 
water for photosynthesis and other metabolic ac-
tivities. Adequate rainfall promotes healthy veg-
etation growth, leading to increased biomass ac-
cumulation and higher carbon sequestration. The 
observed reduction in LST during these years in-
dicates a cooling effect, likely due to enhanced 
transpiration from lush vegetation, which also 
helps moderate local microclimates.

The interplay between rainfall and tempera-
ture variability is crucial in understanding the dy-
namics of carbon stocks in urban green spaces. 
Vegetation acts as a carbon sink, absorbing CO2 
from the atmosphere and storing it in biomass 
and soil. Therefore, changes in climatic factors 
directly impact the carbon sequestration potential 
of urban ecosystems. During favorable climatic 
conditions (adequate rainfall and moderate tem-
peratures), urban green spaces can significantly 
contribute to carbon sequestration, helping miti-
gate urban greenhouse gas emissions and contrib-
uting to climate change mitigation efforts.

However, extreme climate events, such as 
prolonged droughts or heatwaves, can disrupt 
these processes, leading to fluctuations in carbon 
stocks. Urban planning and management strate-
gies should consider these climatic influences to 
enhance the resilience of urban green spaces and 
their capacity to sequester carbon. Sustainable 
practices, such as increasing vegetation diversi-
ty, optimizing water use, and protecting existing 
green spaces, can help buffer against adverse cli-
matic impacts and support stable carbon seques-
tration over time.

Urban ecosystems management 
for climate change mitigation

Agricultural ecosystems, including rice fields, 
play an important role in storing and sequestering 
carbon, in addition to the widely described con-
tributions of mangrove and urban forest ecosys-
tems. Paddy fields are frequently studied for their 
soil organic carbon (SOC). According to Liu et 
al. (2021), the global average SOC stock in paddy 

fields is estimated at 108 Mg ha−1 for the 0–100 
cm soil layer, with the top 1 meter of paddy soil 
worldwide containing 18 Pg of organic carbon. 
This amount represents approximately 1.2% of the 
global SOC total or about 14.2% of the total SOC 
in agricultural land globally. Without the return of 
straw or the application of manure, SOC in paddy 
fields would continue to decline. Fresh straw and 
decayed straw manure can increase soil SOC by 
9–11% (Ku et al., 2019). Incorporating straw into 
the soil also reduces carbon emissions by more 
than 50% and decreases NH3 and N2O emissions 
by 13% and 11%, respectively (Moreno-Ramón 
et al., 2024). Additionally, soil management with 
manure or biochar can promote SOC accumula-
tion and enhance carbon sequestration by 0.22% 
(Yin et al., 2020). Multiple cropping systems can 
increase carbon sequestration compared to mono-
culture farming, contributing to global warming 
mitigation and sustainable food systems (Komat-
suzaki and Syuaib, 2010; Wang et al., 2023).

Although paddy fields significantly contrib-
ute to carbon stock, they are vulnerable to cli-
mate change and land-use changes, particularly 
conversion to residential areas (Firdaus et al., 
2020; Sunarta and Saifulloh, 2022b). In Den-
pasar, urban area expansion increased by 1.736 
hectares, while paddy field area decreased by 
1.695 hectares between 2002 and 2013, with an-
nual residential area growth of 133.5 hectares and 
paddy field reduction of 130 hectares (Supardan 
et al., 2018). Climate phenomena like the El Ni-
ño-Southern Oscillation (ENSO) and IOD also 
impact to vegetation dynamics (Adnyana et al., 
2024) and carbon stock stability. ENSO causes 
temperature anomalies exceeding +0.5 °C, lead-
ing to prolonged droughts and decreased paddy 
production, while La Niña causes extended heavy 
rainfall, resulting in flooding and submerged pad-
dy fields (Ismail and Chan, 2020). The study area 
frequently experiences flooding during prolonged 
heavy rainfall (Trigunasih and Saifulloh, 2022; 
Widantara and Mutaqin, 2024).

Climate change and anthropogenic factors 
contribute to the instability of carbon stock in 
Denpasar’s UGS. Previous studies highlighted 
that the very strong El Niño events in 2015 and 
2016, followed by La Niña, rejuvenated previ-
ously drought-affected areas, increasing carbon 
stock by 25%. Additionally, the positive IOD in 
2019 caused a 19% decrease in carbon stock, 
which sharply increased by 40% from 2019 to 
2020, coinciding with a moderate La Niña event 
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in 2020 (Dimyati et al., 2024). Climate change 
can degrade vegetation and increase soil tem-
peratures, leading to urban heat islands (UHI), 
emphasizing the importance of early mitigation 
efforts (Mas’uddin et al., 2023). Preserving urban 
forest and mangrove ecosystems is crucial due to 
their resilience to extreme climate dynamics.

Effective environmental management practic-
es are essential for mitigating the impacts of cli-
mate change on urban green spaces and agricul-
tural ecosystems. Strategies such as sustainable 
agriculture, urban planning, and the conservation 
of existing green spaces can significantly enhance 
carbon sequestration and resilience to climate 
variability. Urban planning should prioritize the 
preservation and expansion of green spaces, in-
cluding urban forests and mangroves, which are 
highly effective at sequestering carbon and pro-
viding resilience against climate extremes. Imple-
menting green infrastructure, such as green roofs, 
urban parks, and community gardens, can help re-
duce urban heat islands and enhance local biodi-
versity. Developing and promoting climate-resil-
ient agricultural and urban management practices 
is crucial. This includes using drought-resistant 
plant varieties, efficient water management sys-
tems, and adaptive land-use planning to cope with 
the impacts of extreme weather events such as 
ENSO and IOD. Engaging local communities in 
sustainable practices and raising awareness about 
the importance of carbon sequestration and cli-
mate resilience can lead to more effective imple-
mentation of environmental management strate-
gies. Community-based initiatives, such as urban 
gardening and conservation projects, can foster a 
sense of stewardship and collective action.

Limitations and outlook

This study has several limitations, primarily 
related to the methodological approaches used to 
estimate the proportion of green space and calcu-
late carbon stock. While the NDVI is widely used 
for estimating carbon stock, its sensitivity to veg-
etation greenness and density thresholds poses 
challenges for accurately mapping UGS. Future 
research should consider incorporating super-
vised machine learning techniques for land-use 
classification in remote sensing data to address 
these limitations and improve accuracy.

The current calculation methods are not fully 
optimized, especially for densely vegetated ar-
eas like mangrove ecosystems. NDVI may not 

accurately capture carbon stocks in high-density 
vegetation. Comprehensive methods, such as 
combining multiple vegetation indices or utilizing 
advanced remote sensing techniques, should be 
employed in future research to ensure more rep-
resentative carbon stock estimates for each eco-
system type. Additionally, our study generalized 
vegetation density and greenness levels, potential-
ly equating healthy green grass with urban forests 
and underestimating carbon stocks for urban for-
ests with sparse canopies and unhealthy foliage.

For more precise carbon stock estimation, 
higher spatial resolution satellite imagery is rec-
ommended. Future studies should utilize high-
resolution satellite images, such as those from 
PlanetScope and WorldView, to overcome the 
limitations associated with lower resolution data. 
These high-resolution images will provide more 
detailed and accurate models of carbon stock es-
timation, serving as a robust basis for urban envi-
ronmental management and spatial planning.

CONCLUSIONS

This study highlights the effectiveness of us-
ing remote sensing data, particularly vegetation 
indices from Landsat 8, to map and quantify car-
bon stocks in UGS ecosystems over an extended 
period. Analyzing time-series data from 2014 to 
2022 provided significant insights into the spa-
tial and temporal dynamics of carbon stocks. 
The findings revealed a 24% overall increase in 
carbon stocks, though year-to-year fluctuations 
were notable. Carbon stocks decreased by 19% 
between 2017 and 2019 but saw substantial in-
creases of 25% and 40% during the 2015–2016 
and 2019–2020 periods, respectively. Different 
UGS ecosystems, such as mangroves and urban 
forests, responded variably to climate change, 
with mangroves showing more stable and adap-
tive patterns.

Despite these promising results, the study 
acknowledged limitations. The sensitivity of the 
NDVI to vegetation greenness and density poses 
challenges in accurately mapping UGS and esti-
mating carbon stocks, particularly in dense man-
grove areas. This limitation suggests that NDVI 
may underestimate carbon stock variability in 
high-density vegetation. To improve accuracy, 
future research should use supervised machine 
learning techniques for land-use classification 
in remote sensing data and combine multiple 
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vegetation indices or advanced methods for com-
prehensive carbon stock assessments. The current 
study’s generalization of vegetation density may 
have underestimated carbon stocks in some areas. 
High-resolution satellite imagery from platforms 
like PlanetScope and WorldView is recommended 
for precise carbon stock estimation. These images 
offer detailed and accurate models, enhancing ur-
ban environmental management and spatial plan-
ning. This approach will provide a reliable basis 
for climate change mitigation and reduce urban 
greenhouse gas emissions, promoting effective 
environmental management.
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