Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Increased waste generation due to population growth and increasing consumption patterns cause pollution, including pollution in global scale due to the emission of methane (CH4) and carbon dioxide (CO2) from the waste in the landfill. The study purposed to analyze the GHG (Green House Gases) emission generated by solid waste management in Malang in 2012 and in the next 10 years through the application of waste recycling from upstream to downstream. The production of methane (CH4) in landfill were analyzed using the model equations developed by IPPC (2001) and the reduction of the GHG from recycling were analyzed using GHG emission factors. Dynamic model of the GHG emission was developed to analyze and to predict GHG emission from recycling and dumping activity. The GHG emissions of waste management in 2012 (Scenario 1) is 192,291.19 tCO2e and in the next 10 years is 254,548.93 tCO2e (>32.19%). Application of Scenario 2 and Scenario 3 in the next 10 years produces GHG emission 134,290.38 tCO2e (<30.16%) and 37,741.56 tCO2e (<80.37%).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
74--82
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Doctoral Program of Environmental Science, School of Postgraduate Studies, Diponegoro University, Imam Barjo Str. 5, Semarang 50241, Indonesia
- Department of Civil Engineering, Muhammadiyah University Malang, Raya Tlogomas Str. 246, Malang 65144, Indonesia
autor
- Doctoral Program of Environmental Science, School of Postgraduate Studies, Diponegoro University, Imam Barjo Str. 5, Semarang 50241, Indonesia
- Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Imam Barjo Str. 5, Semarang 50241, Indonesia
autor
- Doctoral Program of Environmental Science, School of Postgraduate Studies, Diponegoro University, Imam Barjo Str. 5, Semarang 50241, Indonesia
- Department of Business Administration, Diponegoro University, Imam Barjo Str. 5, Semarang 50241, Indonesia
Bibliografia
- 1. Anschutz J., Ijgosse J., Scheinberg A. 2004. Putting integrated sustainable waste management into practice. Waste Netherland.
- 2. Brunner C.R. 2002. Waste-to-energy combustion, part 13a incineration technologies. In: Handbbok of Solid Waste Management (Eds G. Tchobanoglous, G. and F. Kreith) McGraw-Hill Companies, pp. 13.4–13.7.
- 3. Cheremisinoff N.P. 2003. Handbook of solid waste management and waste minimization technologies. Butterworth Heinemann.
- 4. Dhokhikah Y., Trihadiningrum Y. 2012. Solid waste management in Asian developing countries: challenges and opportunities. Journal of Applied Environmental and Biological Sciences, 2(7), 329–335.
- 5. Fikri E., Purwanto P., Sunoko H.R., 2015. Modelling of household hazardous waste (HHW) management in Semarang city (Indonesia) by using life cycle assessment (LCA) approach to reduce greenhouse gas (GHG) emissions, Procedia Environmental Sciences, 23, 123–129.
- 6. GMC (Government of Malang City). 2012. Adipura’s non-physical data of Malang city 2012/2013.
- 7. Houghton J.T., Filho L.G.M., Lim B., Treanton K., Mamaty I., Bonduki Y., Griggs D.J., Callender B.A. 1998. Revised 1996 IPCC guidelines for national greenhouse gas inventories. UK Meteorological Office.
- 8. Ifeu (Institut für Energie). 2009. Manual SWMGHG calculator-tool for calculating Greenhouse Gases (GHG) in Solid Waste Management (SWM). Frankurt: KfW Bankengruppe Communication Dept.
- 9. Khajuria A., Yamamoto Y., Morioka T. 2010. Estimation of municipal solid waste generation and landfill area in Asian developing countries. Journal of Environmental Biology, 31 (5): 649-654.
- 10. Mahyudin R.P., Hadi S.P., Purwanto. 2015. Waste reduction by scavengers in Basirih landfill Banjarmasin South Kalimantan Indonesia: waste composition based analysis. J. Appl. Environ. Biol. Sci., 5(11), 118–126.
- 11. McDougall F., White P., Franke M., Hindle P. 2001. Integrated solid waste management : a life cycle inventory. Blackwell Science.
- 12. ME (The Ministry of Environment). 2008. Indonesian domestic solid waste statistics year 2008. State Ministry of Environment Republic of Indonesia.
- 13. Meidina C., Gamse T. 2010. Development of waste management practices in Indonesia. European Journal of Scientific Research, 40(2), 199–210.
- 14. METI (The Ministry of Economy, Trade and Industry). 2012. Study on the integrated waste to energy project in greater Malang. Hitachi Zosen Corporation, EX Research Institute Ltd., Smart Energy Co., Ltd.
- 15. MPW (Ministry of Public Works and German Development Bank). 2012. Emission reduction in cities – solid waste management: feasibility study for selected measures in Malang, Jombang, Jambi and result of additional tasks. Fichtner.
- 16. Rand T., Haukohl J., Marxen U. 2000. Municipal solid waste incineration, a decision maker’s guide. The International Bank for Reconstruction and Development, World Bank.
- 17. SMC (Statistic of Malang City). 2012. Malang City in Figure 2012.
- 18. Tchobanoglous G., Theisen H. and Vigil S.A. 1993. Integrated Solid Waste Management: Engineering, Principles and Management Issues. McGraw-Hill International Editions.
- 19. Tsai W.T. 2007. Bioenergy from Landfill Gas (LFG) in Taiwan. Elsevier Renewable and Sustainable Energy Reviews, 11(13), 331–344.
- 20. UNEP (United Nations Environment Programme). 2012. The Emissions Gap Report 2012 A UNEP Synthesis Report.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1bd91fd-6b7f-4a41-9ce8-91e23bfb0edf