PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wide-angle infrared plasmonic perfect absorber based on graphene-silica grating

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, wide-angle infrared perfect absorption has been demonstrated by using a double-layer graphene strip grating coupled with a silicon dioxide grating. Numerical simulation of the finite-difference time-domain method indicates that the perfect absorption can be achieved due to the effective impedance matching, and all the incident electromagnetic energy is confined in the Al2O3 layer between the silver substrate and the graphene strip grating. Dual-band perfect absorption is achieved with the change of strip width or chemical potential of the bi-layer graphene strip grating. It is found that the spectral position of the absorption peak can be tuned by the chemical potential or the width of the graphene strip, and additionally by the size of the proposed absorber. Moreover, the proposed perfect absorber shows excellent absorption stability for a wide range of the incident angle up to ±65°. The proposed absorber may find potential application in tunable double band perfect absorbers in the mid-infrared range.
Czasopismo
Rocznik
Strony
87--95
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
  • Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People’s Republic of China
Bibliografia
  • [1] NOVOSELOV K.S., GEIM A.K., MOROZOV S.V., JIANG D., ZHANG Y., DUBONOS S.V., GRIGORIEVA I.V., FIRSOV A.A., Electric field effect in atomically thin carbon films, Science 306(5696), 2004, pp. 666–669, DOI:10.1126/science.1102896.
  • [2] NOVOSELOV K.S., GEIM A.K., MOROZOV S.V., JIANG D., KATSNELSON M.I., GRIGORIEVA I.V., DUBONOS S.V., FIRSOV A.A., Two-dimensional gas of massless Dirac fermions in graphene, Nature 438, 2005, pp. 197–200, DOI:10.1038/nature04233.
  • [3] GRIGORENKO A.N., POLINI M., NOVOSELOV K.S., Graphene plasmonics, Nature Photonics 6, 2012, pp. 749–758, DOI:10.1038/nphoton.2012.262.
  • [4] JAMALI A.A., WITZIGMANN B., Plasmonic perfect absorbers for biosensing applications, Plasmonics 9(6), 2014, pp. 1265–1270, DOI:10.1007/s11468-014-9740-1.
  • [5] LANDY N.I., SAJUYIGBE S., MOCK J.J., SMITH D.R., PADILLA W.J., Perfect metamaterial absorber, Physical Review Letters 100(20), 2008, article 207402, DOI:10.1103/PhysRevLett.100.207402.
  • [6] ZHANG L., WANG Y., ZHOU L., CHEN F., Tunable perfect absorber based on gold grating including phase-changing material in visible range, Applied Physics A 125(5), 2019, article 368, DOI:10.1007/s00339-019-2669-7.
  • [7] HE X., YANG J., CHEN D., ZHANG S., HAN Y., ZHANG Z., Sub-wavenumber linewidth mid-infrared notch filter enabled by a dual-period plasmonic structure, Optics Communications 428, 2018, pp. 152–156, DOI:10.1016/j.optcom.2018.07.066.
  • [8] GAO Y.X., REN G.B., ZHU B.F., HUANG L., LI H., YIN B., JIANG S.S., Tunable plasmonic filter based on graphene split-ring, Plasmonics 11(1), 2016, pp. 291–296, DOI:10.1007/s11468-015-0050-z.
  • [9] XU J.B., HU J.X., WANG R.B., LI Q., LI W.W., GUO Y.F., LIU F.K., ULLAH Z., WEN L., LIU L.W., Ultra-broadband graphene-InSb heterojunction photodetector, Applied Physics Letters 111(5), 2017, article 051106, DOI:10.1063/1.4997327.
  • [10] BAQIR M.A., FARMANI A., FATIMA T., RAZA M.R., SHOUKAT S.F., MIR A., Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range, Applied Optics 57(31), 2018, pp. 9447–9454, DOI:10.1364/AO.57.009447.
  • [11] SLOVICK B.A., Negative refractive index induced by percolation in disordered metamaterials, Physical Review B 95(9), 2017, article 094202, DOI:10.1103/PhysRevB.95.094202.
  • [12] LIU Y.M., ZENTGRAF T., BARTAL G., ZHANG X., Transformational plasmon optics, Nano Letters 10(6), 2010, pp. 1991–1997, DOI:10.1021/nl1008019.
  • [13] CHEN F., ZHANG H.F., SUN L.H., LI J.J., YU C.C., Double-band perfect absorber based on the dielectric grating and Fabry–Perot cavity, Applied Physics A 125(11), 2019, article 792, DOI:10.1007/s00339-019-3101-z.
  • [14] LU H., GAN X.T., JIA B.H., MAO D., ZHAO J.L., Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons, Optics Letters 41(20), 2016, pp. 4743–4746, DOI:10.1364/OL.41.004743.
  • [15] LU H., GAN X.T., MAO D., FAN Y.C., YANG D.X., ZHAO J.L., Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures, Optics Express 25(18), 2017, pp. 21630–21636, DOI:10.1364/OE.25.021630.
  • [16] LI H.J., JI C.S., REN Y.Z., HU J.G., QIN M., WANG L.L., Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method, Carbon 141, 2019, pp. 481–487, DOI:10.1016/j.carbon.2018.10.002.
  • [17] LI H.J., WANG L.L., ZHAI X., Scientific Reports 6, 2016, p. 1.
  • [18] CHEN F., YAO D., ZHANG H., SUN L., YU C., Tunable plasmonic perfect absorber based on a multilayer graphene strip-grating structure, Journal of Electronic Materials 48(9), 2019, pp. 5603–5608, DOI:10.1007/s11664-019-07422-0.
  • [19] CAI Y.J., XU K.D., Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure, Optics Express 26(24), 2018, pp. 31693–31705, DOI:10.1364/OE.26.031693.
  • [20] XIONG H., WU Y.B., DONG J., TANG M.C., JIANG Y.N., ZENG X.P., Ultra-thin and broadband tunable metamaterial graphene absorber, Optics Express 26(2), 2018, pp. 1681–1688, DOI:10.1364/OE.26.001681.
  • [21] XU K.D., LI J.X., ZHANG A., CHEN Q., Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips, Optics Express 28(8), 2020, pp. 11482–11492, DOI:10.1364/OE.390835.
  • [22] ALHARBI R., IRANNEJAD M., YAVUZ M., Au-graphene hybrid plasmonic nanostructure sensor based on intensity shift, Sensors 17(1), 2017, article 191, DOI:10.3390/s17010191.
  • [23] JAIN P., GUPTA S., MAITI T., Simulation and analytical study of optical complex field in nano-corral slits plasmonic lens, Plasmonics 13(6), 2018, pp. 2151–2160, DOI:10.1007/s11468-018-0732-4.
  • [24] WEN K., LUO X.Q., CHEN Z.Y., ZHU W.H., GUO W., WANG X.L., Enhanced optical transmission assisted near-infrared plasmonic optical filter via hybrid subwavelength structures, Plasmonics 14(6), 2019, pp. 1649–1657, DOI:10.1007/s11468-019-00963-4.
  • [25] HAN X., WANG T., LI X.M., ZHU Y.J., Dynamically tunable by Kerr effect multichannel filter based on plasmon induced transparencies at optical communication range, Plasmonics 11(3), 2016, pp. 729–733, DOI:10.1007/s11468-015-0102-4.
  • [26] CHEN F., YAO D.Z., LIU Y.N., Graphene–metal hybrid plasmonic switch, Applied Physics Express 7(8), 2014, article 082202, DOI:10.7567/APEX.7.082202.
  • [27] JU L., GENG B.S., HORNG J., GIRIT C., MARTIN M., HAO Z., BECHTEL H.A., LIANG X.G., ZETTL A., SHEN Y.R., WANG F., Graphene plasmonics for tunable terahertz metamaterials, Nature Nanotechnology 6(10), 2011, pp. 630–634, DOI:10.1038/nnano.2011.146.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1bb87cf-ad07-4e17-991a-2787cc705386
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.