Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The surface passivation with titanium sol-gel coatings is a frequently used technique to control the adsorption of selected biological macromolecules and to reduce the exposure of the bulk material to biological matter. Due to the increasing number of new coating-preparation methods and new gel compositions with various types of additives, the quality and homogeneity determination of the surface covering is a critical factor affecting performance of any implanted material. While coating thickness is easy to determine, the homogeneity of the surface distribution of coating materials requires more elaborate methodologies. In the paper, the laser induced breakdown spectroscopy (LIBS) based method, capable to quantitate the homogeneity and uniformity of the europium in titanium dioxide sol-gel coatings on stainless steel surfaces prepared with two different procedures: spin-coating and dip-coating, is presented. The emission intensity of titanium has been used to determine the coating thickness whereas the relative values of europium and titanium emission intensities provide data on the coating homogeneity. The obtained results show that the spin-coating technique provides better surface coverage with titanium dioxide. However, when the surface coating compositions were compared the dip-coating technique was more reliable.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
33--40
Opis fizyczny
Bibliogr. 25 poz., wykr.
Twórcy
autor
- Laboratory for Biophysics of Lipid Aggregates, Department of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wrocław, Poland
autor
- Laboratory for Biophysics of Lipid Aggregates, Department of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wrocław, Poland
autor
- Bio-Optics Group, Department of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wrocław, Poland
autor
- Bio-Optics Group, Department of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wrocław, Poland.
autor
- Bio-Optics Group, Department of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wrocław, Poland.
autor
- Laboratory for Biophysics of Lipid Aggregates, Department of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wrocław, Poland
autor
- Laboratory for Biophysics of Lipid Aggregates, Department of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wrocław, Poland
Bibliografia
- [1] ALAMELU D., SARKAR A., AGGARWAL S.K., Laser-induced breakdown spectroscopy for simultaneous determination of Sm, Eu and Gd in aqueous solution, Talanta, 2008, Vol. 77(1), 256–261.
- [2] BOROWIK T., PRZYBYLO M., PALA K., OTLEWSKI J., LANGNER M., Quantitative measurement of Au and Fe in ferromagnetic nanoparticles with Laser Induced Breakdown Spectroscopy using a polymer-based gel matrix, Spectrochim. Acta B, 2011, Vol. 66(9–10), 726–732.
- [3] BOTITSI H.V., GARBIS S.D., ECONOMOU A., TSIPI D.F., Current Mass Spectrometry Strategies for the Analysis of Pesticides and Their Metabolites in Food and Water Matrices, Mass Spectrom. Rev., 2011, Vol. 30(5), 907–939.
- [4] BOYD J.M., HRUDEY S.E., RICHARDSON S.D., LI X.F., Solidphase extraction and high-performance liquid chromatography mass spectrometry analysis of nitrosamines in treated drinking water and wastewater, Trac-Trend. Anal. Chem., 2011, Vol. 30(9), 1410–1421.
- [5] DRESSLER V.L., ANTES F.G., MOREIRA C.M., POZEBON D., DUARTE F.A., As, Hg, I, Sb, Se and Sn speciation in body fluids and biological tissues using hyphenated-ICP-MS techniques: A Review, Int. J. Mass Spectrom., 2011, Vol. 307(1– 3), 149–162.
- [6] DUNNILL C.W., KAFIZAS A., PARKIN I.P., CVD Production of Doped Titanium Dioxide Thin Films, Chem. Vapor. Depos., 2012, Vol. 18(4–6), 89–101.
- [7] GANDHIRAMAN R.P., DANIELS S., CAMERON D.C., A Comparative Study of Characteristics of SiO(x)C(y)H(z), TiO(x) and SiO-TiO Oxide-Based Biocompatible Coatings, Plasma Process. Polym., 2007, Vol. 4, S369–S373.
- [8] GNASER H., FLEISCHHAUER J., HOFER W.O., Analysis of Solids by Secondary Ion and Sputtered Neutral MassSpectrometry, Appl. Phys. A-Mater, 1985, Vol. 37(4), 211–220.
- [9] GODIN J.P., MC CULLAGH J.S.O., Review: Current applications and challenges for liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS), Rapid Commun. Mass Sp., 2011, Vol. 25(20), 3019–3028.
- [10] KIM Y.P., HONG M.Y., KIM J., OH E., SHON H.K., MOON D.W., KIM H.S., LEE T.G., Quantitative analysis of surfaceimmobilized protein by TOF-SIMS: Effects of protein orientation and trehalose additive, Anal. Chem., 2007, Vol. 79(4), 1377–1385.
- [11] KLUSON P., KMENT S., MOROZOVA M., DYTRYCH P., HEJDA S., SLATER M., HUBICKA Z., KRYSA J., Ultrathin functional films of titanium(IV) oxide, Chem. Pa., 2012, Vol. 66(5), 446–460.
- [12] KRZAK-ROS J., FILIPIAK J., PEZOWICZ C., BASZCZUK A., MILLER M., KOWALSKI M., BEDZINSKI R., The effect of substrate roughness on the surface structure of TiO2, SiO2, and doped thin films prepared by the sol-gel method, Acta Bioeng. Biomech., 2009, Vol. 11(2), 21–29.
- [13] LEE Y.W., CHOI D.K., PARK J.W., Surface chemical characterization using AES/SAM and ToF-SIMS on KOHimpregnated activated carbon by selective adsorption of NOx, Ind. Eng. Chem. Res., 2001, Vol. 40(15), 3337– 3345.
- [14] MOHAIDAT Q.I., SHEIKH K., PALCHAUDHURI S., REHESE S.J., Pathogen identification with laser-induced breakdown spectroscopy: the effect of bacterial and biofluid specimen contamination, Appl. Optics., 2012, Vol. 51(7), B99– B107.
- [15] NAGARAJAN S., RAJENDRAN N., Surface characterisation and electrochemical behaviour of porous titanium dioxide coated 316L stainless steel for orthopaedic applications, Appl. Surf. Sci., 2009, Vol. 255(7), 3927–3932.
- [16] NEVIN A., SPOTO G., ANGLOS D., Laser spectroscopies for elemental and molecular analysis in art and archaeology, Appl. Phys. A-Materi, 2012, Vol. 106(2), 339–361.
- [17] OHTSU N., MASAHASHI N., MIZUKOSHI Y., WAGATSUMA K., Hydrocarbon Decomposition on a Hydrophilic TiO2 Surface by UV Irradiation: Spectral and Quantitative Analysis Using in-Situ XPS Technique, Langmuir, 2009, Vol. 25(19), 11586– 11591.
- [18] OLMEDO D.G., DUFFO G., CABRINI R.L., GULIELMOTTI M.B., Local effect of titanium implant corrosion: an experimental study in rats, Int. J. Oral. Max. Surg., 2008, Vol. 37(11), 1032–1038.
- [19] PORIZKA P., PROCHAZKA D., PILAT Z., KRAJCAROVA L., KAISER J., MALINA R., NOVOTNY J., ZEMANEK P., JEZEK J., SERY M., BERNATOVA S., KRZYZANEK V., DOBRANSKA K., NOVOTNY K., TRTILEK M., SAMEK O., Application of laserinduced breakdown spectroscopy to the analysis of algal biomass for industrial biotechnology, Spectrochim. Acta B, 2012, Vol. 74–75, 169–176.
- [20] RAWOLLE M., NIEDERMEIER M.A., KAUNE G., PERLICH J., LELLIG P., MEMESA M., CHENG Y.J., GUTMANN J.S., MULLER-BUSCHBAUM P., Fabrication and characterization of nanostructured titania films with integrated function from inorganic-organic hybrid materials, Chem. Soc. Rev., 2012, Vol. 41(15), 5131–5142.
- [21] SHADANBAZ S., DIAS G.J., Calcium phosphate coatings on magnesium alloys for biomedical applications: A review, Acta Biomater., 2012, Vol. 8(1), 20–30.
- [22] SHELOR C.P., DASGUPTA P.K., Review of analytical methods for the quantification of iodine in complex matrices, Anal. Chim. Acta, 2011, Vol. 702(1), 16–36.
- [23] SINGH V.K., RAI A.K., Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review, Lasers Med. Sci., 2011, Vol. 26(5), 673–687.
- [24] SUGAR J., Spector N.NIST ASD Team (2014). NIST Atomic Spectra Database (version 5.2), [Online]. Available: http://physics.nist.gov/asd [Thursday, 16-Jul-2015 10:16:37 EDT]. National Institute of Standards and Technology, Gaithersburg, MD.
- [25] TUCKER J.M., DYAR M.D., SCHAEFER M.W., CLEGG S.N., WIENS R.C., Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis, Chem. Geol., 2010, Vol. 277(1–2), 137–148.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1ba3f11-21fa-405d-a8e5-1866a1c2f73e