Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, using one of the most effective simulation methods, namely the cellular automata formalism, we simulate the dynamics of a system which is composed of a large number of two-level atoms placed in a two-dimensional cavity. We suppose additionally that the cavity is confined by four semi-transparent “mirrors”. We show that similarly to the one-dimensional case, several interesting effects including the molasses effect occur in the considered system.
Rocznik
Tom
Strony
189--194
Opis fizyczny
Bibliogr. 7 poz., rys.
Twórcy
autor
- Quantum Optics and Engineering Division, Institute of Physics University of Zielona Góra, A. Szafrana 4a, 65-516 Zielona Góra, Poland
autor
- Vinh University, 182 Le Duan str., Vinh, Nghe An, Vietnam
autor
- Quantum Optics and Engineering Division, Institute of Physics University of Zielona Góra, A. Szafrana 4a, 65-516 Zielona Góra, Poland
autor
- Quantum Optics and Engineering Division, Institute of Physics University of Zielona Góra, A. Szafrana 4a, 65-516 Zielona Góra, Poland
Bibliografia
- [1] R. P. Feynman, Simulating Physics with Computers, Int. J. Theor. Phys. 21, 467-488 (1982).
- [2] R. P. Feynman, Quantum Mechanical Computers, Found. Phys. 16, 507-531 (1986).
- [3] A. Kowalewska-Kudłaszyk and W. Leo´nski, Cellular automata and two-level systemsdynamics – Spreading of disorder, J. Comp. Meth. Sci. Eng. 8, 147-157 (2008).
- [4] W. Leoński and A. Kowalewska-Kudłaszyk, Cellular Automata – a Tool for Disorder, Noise and Dissipation Investigations, Cellular Automata, in: A. Salcido (ed.) Simplicity Behind Complexity, InTech, p. 419-438, 2011. Available at: http://www.intechopen.com/books/cellular-automatasimplicity-behind-complexity/cellular-automata-a-tool-fordisorder-noise-and-dissipation-investigations
- [5] L. Alen and J. H. Eberly, Optical resonance and Two-level atoms, Dover, New York 1987.
- [6] J. P. Eckmann, S. O. Kamphorst, and D. Ruelle, Recurrence Plots of Dynamic-Systems, Europhys. Lett. 4, 973-977 (1987).
- [7] E. Bradley, R. Mantilla, Recurrence plots and unstable periodic orbits, Chaos 12, 596-600 (2002).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1b1ea3f-59de-499a-809c-a8203791ab41