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PREDICTION OF WATER CONDUITS FAILURE RATE

– COMPARISON OF SUPPORT VECTOR MACHINE

AND NEURAL NETWORK

PRZEWIDYWANIE WSKA�NIKA

AWARYJNOŒCI PRZEWODÓW WODOCI¥GOWYCH

– WEKTORY NOŒNE ORAZ SIECI NEURONOWE

Abstract: This paper presents the possibility of applying support vector machines (SVMs) and artificial

neural networks (ANNs), based on radial basis functions to predict the failure rate of water conduits. The

SVM method is an algorithm for carrying out regression and classification, taking into account a nonlinear

decision space. This hyperplane divides the whole area in such a way that objects of different affiliation are

separated from one another. In the case of ANNs, each of the neurons models a Gaussian response surface.

The information from the inputs is transmitted to a basis function and each neuron calculates the Euclidean

distance between the input, reference and output vectors. The failure rate of distribution pipes and house

connections was predicted on the basis of operational data for the years 2001–2012. In both the methods the

independent variables were: the length, diameter and year of construction of the distribution pipes and the

house connections. The computations were carried out using the Statistica 12.0 software. The SVM-RBF

model for the house connections and the distribution pipes had respectively 14 SVMs (including 7 localized

SVMs) and 56 SVMs (including 46 localized SVMs). The ANN-RBF model contained 8 and 27 hidden

neurons for respectively the distribution pipes and the house connections.
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1. Introduction

Water distribution systems are the critical underground infrastructure components

because they perform the strategic functions in broadly understood municipal engineer-

ing. In the current terrorist threat context [1], the necessity to ensure the proper

protection and management of water supply systems is increasingly often highlighted.

These are undoubtedly vital issues which together with reliability analyses, water

demand analyses and the properly planned modernization of the pipelines and the whole
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water supply infrastructure should be and currently are the subject of numerous studies

and projects. Research on the technical condition, failure frequency and operational

reliability of water conduits and the associated water losses is highly advanced in

Poland and abroad [2–7]. The research findings indicate that such studies need to be

continued in order to gain deeper knowledge in this field, especially with regard to

mathematical modelling, which owing to the development of computing techniques is

constantly improved and uses increasingly more accurate modelling methods [8].

Mathematical prediction and modelling have become very popular in broadly under-

stood environmental engineering [9–13], which is an inducement to apply them to the

study of the failure frequency of water distribution systems. So far such regression

methods as: support vector machines (SVM), artificial neural networks (ANN) [14],

K-nearest neighbours (KNN) [15] and regression and classification trees [16] have been

used to determine failure rates.

The main aim of this study was to demonstrate that it is possible to apply a regression

method based on support vector machines to predict the failure rate of water supply

pipelines and to compare the results obtained in this way with the results of modelling

this rate by means of RBF (radial basis functions) artificial neural networks. Besides

also some prediction examples using other kernel functions of SVM models (linear,

polynomial and sigmoidal) will be presented to achieve wider comparison area. Thanks

to such a comparison it will be possible to determine the optimal modelling method for

the currently operated water supply networks. A variant of the failure rate prediction

method presented here has been successfully applied by Aydogdu and Firat [17], which

induced the author to take up this subject as applied to the Polish water distribution

network. The results presented here are complementary to the results of modelling the

failure rate by SVM, reported in [18] where all the kinds of kernel functions were

analyzed and other predictors were used. It is also examined whether the water supply

pipeline failure rate prediction methods proposed in this paper can be an alternative to

typical mathematical models.

1.1. Support vector machines

The support vector machines (SVM) method is an algorithm for regression and

classification with a nonlinear decision space taken into account. This hyperplane

divides the whole area in such a way that objects of different affiliation are separated

from one another. It is also necessary to keep a maximum margin of error, ie the

distance from the separating plane. The number of support vector machines determines

the complexity of the relations between dependent and independent variables [19]. In

the case of a qualitative analysis of such a dependent variable as the failure rate of water

conduits, no classification, but regression is performed. Four kinds of SVMs, charac-

terized by four types of kernel functions: linear, polynomial, sigmoidal and radial basis

functions (RBF), are distinguished [19]. The notion of kernel functions derives from

investigations of linear vector spaces. In the case of the problem considered here,

RBF-SVM models, ie based on solely radial basis functions, were built and compared

with ANN models. Nevertheless predictions results using other kernel functions are also

148 Ma³gorzata Kuty³owska



displayed to show wider modelling point of view. But the straight comparison (SVM vs.

ANN) could be only performed between models based on the same kernel functions

(RBF). In the course of an regression analysis a relation between the dependent variable

and the independent variables (predictors) is sought. This relation should possibly most

accurately generate a dependent variable value for new cases (testing sample data), ie
ones which the SVM model has not “seen” before, having been trained on a training

sample. The mapping function �(x) is called kernel function which meets Mercer

condition and feature map for Mercer kernel is as follows [20]:

k x y x y( , ) ( ) ( )� � � (1)

The kernel functions are described by the equations (2–5), respectively for linear,

polynomial, sigmoidal and RBF [20]:
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where: � – a learning rate,

x – independent variable,

y – dependent variable.

The prediction function is calculated from the relation [19]:

y X w x bT( ) ( )� �� (6)

where: b – bias,

w – weight vector,

� – mapping function.

1.2. RBF artificial neural networks

Since the theory of artificial neural networks is described in detail in the literature on

the subject [21], only the most basic information on RBF artificial neural networks is

provided here. Unlike the multilayer perceptron, RBF ANNs contain radial neurons

(performing a function radially changing around a given centre in the vicinity of which

nonzero values are assumed). Each such neuron models a Gaussian response surface.

The information from the inputs is transmitted to the radial basis function and each

neuron calculates the Euclidean distance between the input, reference and output

vectors. It is essential that there are enough radial neurons so that they can accurately

correlate the function with the sought solution. The solutions based on RBF artificial
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neural networks are slow-speed and require a considerable storage area, which is

sometimes a serious limitation [19]. RBF ANNs are trained as follows. Training

proceeds in two steps [19]: first RBFs are arranged using the input signals and then

weights between the RBFs and the output neurons are determined. Consequently, no

iterative process is required, which is evidence of the absence of typical training epochs.

The characteristic feature of RBF artificial neural networks is that the RBFs are

determined on the basis of the input vector and after the weights are added up the result

is fed to the output. The location and width of the basis functions and the weights

linking them with the output signals are of major importance in RBF artificial neural

networks [19].

2. Experimental methodology

The failure rate (�, fail./(km � a)) of the distribution pipes and the house connections

in a selected Polish town was predicted using the RBF-SVM method and the RBF-ANN

method. The two approaches were based on radial basis functions. Moreover some

prediction results using other kernel functions (linear, polynomial and sigmoidal) are

displayed to make a comparison more accurate. Operational data for the years

2001–2012 obtained from the town’s water company were used for modelling. In the

case of SVM modelling, the whole data set was randomly divided into two equal (50%)

subsets. The training sample and the testing sample had 147 data each for the house

connections and respectively 124 and 125 data for the distribution pipes. First a model

was built using the training data and then it was tested on an “unseen” sample. In the

case of ANNs, the procedural algorithm was slightly different due to the peculiarities of

this kind of modelling. The artificial neural network learning process consisted of

several stages: a training stage (50% of the data), followed by a testing stage (25% of

the data) and finally, the validation (25% of the data) of the created models. In the

considered case, the whole data set (294 data for the house connections and 249 data for

the distribution pipes) was used to train the ANN. The division into a training sample,

a testing sample and a validating sample was random. Using the ANN algorithm one

can also make prognosis based on unseen data. Such a prognosis was made using

a separately created set of operational data. Models were built for separately the

distribution pipes and the house connections. The computations were carried out using

the Statistica 12.0 software.

Since the SVM method is a kind of nonparametric regression, the correlations

between the dependent variables (the predicted value) and the independent variable

need not to be known. V-fold cross validation was used to find the optimal model

parameters. In this type of cross validation, data are divided into V randomly selected

disjoint parts. Using the V-1 parts of data as training examples the dependent variable is

predicted and the prediction error is calculated on the basis the residual sum of squares.

The procedure is executed for all the V data segments. Then a model quality measure is

determined on the basis of the averaged errors of the particular cycles. The optimal

model parameters are selected during a quality analysis. The parameters determined in

the course of the V-fold cross validation are: gamma, capacity, epsilon and the number
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of support vector machines (including localized vectors) [19]. Tenfold (V = 10) cross

validation was used in the considered problem, whereby it was possible to select proper

values for such parameters (learning constants) as capacity (C) and epsilon (�), since

they are not a priori known. In the case of artificial neural networks, model parameters

(eg the number of hidden neurons and the type of activation functions) are determined

during ANN training using a proper training algorithm. Between ten and twenty ANN

models, for which the number of hidden neurons ranged from 1 to 30, were tested. The

model characterized by the smallest mean-square error and the best fit between the real

data and the predicted ones was selected. The results presented later in this paper are for

this selected optimal ANN model.

In both the methods the independent variables were: length (Lr, Lp), diameter (Dr, Dp)

the year of construction (Yr, Yp) of the distribution pipes and the house connections. The

same independent variables had been used by Aydogdu and Firat [17] to model the

failure rate of water conduits by means of a combination of SVM and fuzzy logic. It

should be noted that the average length of the pipelines was used in the calculations.

This approach to failure rate determination (using the average length) is suggested in the

literature on the subject [2]. The real (experimental) failure rate was calculated from the

well-known relation [2, 3]:

� �
�

N t

L t

( )

�
(7)

where: N(t) – the number of failures of linear objects in time interval �t, units;

L – the average length of pipelines in time �t, km;

�t – the observation time, year.

3. Results and discussion

The parameters of the built SVM-RBF and ANN-RBF models for the different types

of water conduits are presented in Table 1. The validation error was one of the

considerations for selecting an SVM model most accurately predicting the failure rate.

The validation error for the distribution pipes and the house connections amounted to

respectively 0.08 and 0.11. Nevertheless, the failure rate prediction on the basis of the

testing sample was not satisfactory from the predicted/real data fit point of view.

Moreover, the number of SVMs for the distribution pipes was high and as much as 82%

of them were localized SVMs, ie with weights equal to � the capacity value (Table 1),

indicating a more complicated model structure. In the case of any kind of modelling,

one should answer the question whether the aim is to obtain a perfect data fit at any

cost, ie at the expense of model architecture complication, or rather to reveal the

correlations between the dependent and independent variables. The latter approach

enables one to find out whether the independent variables (predictors in the case of the

SVM method) show significant correlations with the dependent variable, even if the

estimate carries a predefined admissible error.
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Table 1

Parameters of SVM-RBF and ANN-RBF models

Type of conduit/parameter Distribution pipes House connections

SVM model

Gamma 0.333 0.333

Capacity (C) 3 1

Epsilon (�) 0.2 0.5

Number of support vectors (localized) 56 (46) 14 (7)

Cross-validation error 0.081 0.110

ANN model

Number of hidden neurons 8 27

Activation functions: hidden/output layer Gaussian/linear Gaussian/linear

Training algorithm RBFT RBFT

Correlation coefficient (learning/prognosis step) 0.956/0.859 0.997/0.897

Determination coefficient (learning/prognosis step) 0.914/0.737 0.994/0.805

In the case of the ANN models, Pearson’s correlation coefficient (R), a determination

coefficient (R2) and a relative mean-square prediction error (amounting to about 20%

for the distribution pipes and the house connections) would be compared. The error is

rather high in comparison with the results of failure rate modelling by, eg artificial

neural networks based on the multilayer perceptron [22]. But in the cited paper there

was an additional input signal – the pipeline material, which (besides the perceptron

structure) could have contributed to the closer convergence between the real and

predicted data. Also in [23], where hourly water demand histograms were predicted,

RBF ANNs were found to be less useful than the multilayer perceptron. Despite the fact

that there were three times more hidden neurons in the house connections model than in

the distribution pipes model (Table 1), the prediction results are worse and characterized

by larger discrepancies between the real and predicted data (Figs 1 and 2). Because of

the nature of RBF ANNs, the activation functions and the training method were

pre-imposed, which also can have a bearing on modelling quality in comparison with,

eg artificial neural networks using the multilayer perceptron, where it is possible to use
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Fig. 1. Prediction results of house connections’ failure rate – testing-SVM/prognosis-ANN
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several different functions, such as the sigmoidal function, the exponential function and

so on [22].

The failure rate prediction results for the learning sample are presented in Table 2

while the ones for the testing sample (the SVM model) and the prognosis stage (the

ANN model) are shown in Figs 1 and 2.

Table 2

Results of failure rate prediction – learning step

Year
House connections Distribution pipes

Experimental ANN-RBF SVM-RBF Experimental ANN-RBF SVM-RBF

2001 0.94 0.95 1.17 0.34 0.36 0.38

2002 0.84 0.84 1.16 0.34 0.36 0.38

2003 1.59 1.58 1.26 0.50 0.47 0.48

2004 1.07 1.07 1.32 0.37 0.39 0.41

2005 1.00 1.00 1.32 0.57 0.48 0.52

2006 1.15 1.15 1.33 0.42 0.42 0.42

2007 0.83 0.80 1.12 0.31 0.30 0.33

2008 0.65 0.63 0.79 0.22 0.21 0.22

2009 0.61 0.62 0.70 0.25 0.25 0.24

2010 0.50 0.50 0.63 0.27 0.26 0.24

2011 0.23 0.33 0.57 0.10 0.21 0.20

2012 0.38 0.38 0.51 0.24 0.25 0.24

It is necessary to draw this distinction between the testing sample for the SVM model

and the prognosis stage for the ANN model since the testing sample data and the

prognosis stage data were unknown to the given model. Only in this way, by analyzing

the results obtained for the data set unseen by the model, one can assess the quality of

the model and its applicability to dependent variable (failure rate) prediction. Moreover,

in the Table 3 and 4 the results prediction in learning step and main parameters of the

models using other kernel functions (linear, polynomial and sigmoidal) are displayed,

respectively. The main aim of this work was to compare the modelling results of ANN
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Fig. 2. Prediction results of distribution pipes’ failure rate – testing-SVM/prognosis-ANN
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and SVM models based on radial basis function. The information shown in the Table 3

and 4 should be rather treated as supplement. The analysis of the Table 3 shows that for

distribution pipes SVM model based on sigmoidal function has the best convergence

with experimental data in learning step (R2 = 0.85). Slightly different situation is

observed concerning house connections. For these conduits sigmoidal and polynomial

functions were responsible for the best agreement (learning step) between predicted and

experimental values of failure rate, R2 equalled to 0.87 and 0.84, respectively. The

whole comparison of prediction results using all kernel functions was described in [18]

for another water distribution system. In this work only basic information concerning

other kernel functions are stated.

Table 3

Results of failure rate prediction (other kernel functions) – learning step

Year

House connections Distribution pipes

SVM-linear
SVM-poly-

nomial
SVM-sigmoidal SVM-linear

SVM-poly-

nomial
SVM-sigmoidal

2001 1.04 1.04 0.95 0.43 0.43 0.39

2002 1.04 1.04 0.84 0.43 0.43 0.40

2003 1.18 1.21 1.20 0.47 0.47 0.51

2004 1.22 1.07 1.10 0.45 0.43 0.39

2005 1.24 1.06 0.93 0.49 0.48 0.53

2006 1.25 1.14 1.22 0.45 0.43 0.40

2007 0.99 1.03 0.85 0.33 0.40 0.37

2008 0.66 0.78 0.65 0.22 0.27 0.24

2009 0.58 0.63 0.52 0.21 0.26 0.22

2010 0.50 0.52 0.50 0.20 0.27 0.12

2011 0.43 0.33 0.50 0.15 0.22 0.04

2012 0.38 0.37 0.51 0.17 0.20 0.23

An analysis of Table 2 clearly shows that there is better agreement between the

ANN-RBF model training results and the real failure rate � values than in the case of the

SVM-RBF model used for the house connections. For the distribution pipes the

differences in failure rate predictions between the two modelling methods are not so

significant and one can say that the two methods are equally effective, as indicated by

the fact that coefficients R = 0.96 and R2 = 0.92 are identical for both methods.

Considerable errors (over 100%) occur in the estimates of the failure rate for the

distribution mains only in 2011, which is undoubtedly due to the fact that this rate is

very much different from the rates for the other analyzed years. A similar error occurs

in the predictions of the failure rate for the house connections in 2011. Therefore the

question arises: what should be done in the case of divergent data? Should they be

included in order not to disrupt the continuity of the analysis of operational data, as it

was done in this paper, or rather completely rejected? However, one should take into

account the kind of analyzed problem. The modelling of the technical condition and
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failure rate of a water distribution network should not omit or exclude some years from

the analysis simply because of divergent data. The information about the failure rate

level in a given year is based on pipeline failures which really occurred. Therefore if

some years were neglected in the analysis, this would result in an incomplete picture of

the reality. Whereas models based on all the available data make it possible to obtain

a complete picture, albeit not always a very accurate one.

Table 4

Parameters of SVM models based on other kernel functions

Type of conduit/parameter Distribution pipes House connections

SVM-linear

Gamma — —

Capacity (C) 10 2

Epsilon (�) 0.4 0.3

Number of support vectors (localized) 36 (27) 50 (46)

Cross-validation error 0.094 0.112

SVM-polynomial

Gamma 0.333 0.333

Capacity (C) 10 5

Epsilon (�) 0.4 0.3

Number of support vectors (localized) 40 (33) 52 (48)

Cross-validation error 0.124 0.136

SVM-sigmoidal

Gamma 0.333 0.333

Capacity (C) 10 10

Epsilon (�) 0.1 0.1

Number of support vectors (localized) 116 (110) 123 (119)

Cross-validation error 0.093 0.119

The analysis of the Table 4 shows that SVM models based on other kernel functions

are more complicated due to eg higher capacity value, higher value of parameter �
(linear and polynomial functions) and more support vectors (also localized). The aim of

the modelling is not only to get convergent prediction results, but also to achieve

relatively simple model structure and its parameters. The choosing of the optimal model

(concerning SVM modelling) should be based not only on agreement between

experimental and predicted values, but also on analyzing the cross-validation error and

the model architecture described by eg number of support vectors (also localized) and

capacity. The enough huge data base is also the problem during the modelling. In some

cases the number of available operating parameters or number of registered cases

(received from water utilities) is too low to build the model responsible for prediction of

failure rate with satisfactory convergence with real data. The models proposed in this

paper consist of basic operating data. In the future it seems to be reasonable to widen

the vector of independent variables to create more general models.
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Similar correlations (as the ones described above concerning RBF models) between

real and predicted data were obtained at the testing stage (the SVM model) and the

prognosis stage (the ANN model), as shown in Figs 1 and 2. In the case of the house

connections, more convergent results are generated by the ANN model, but for some

years (eg 2003, 2006 and 2009) the differences are much larger than the ones observed

at the learning stage. Despite many divergences, the trend in the variation of the

predicted values is similar to the trend in the variation of experimental values. In the

years 2006–2008 a similar pattern is observed for the SVM model, but most of the �

values are much higher than the real ones.

The prediction of the failure rate of the distribution pipes (Fig. 2) by the SVM

method and the ANN method was characterized by acceptable agreement between the

predicted and experimental results in both cases. The Pearson’s correlation coefficient

for the SVM model and the ANN model amounted to respectively 0.96 and 0.86,

indicating that the SVM method is slightly better for predicting the failure rate of

distribution pipes than the ANN method. The opposite is true for house connections. It

should also be noted that the results of predicting the failure rate of the distribution

pipes and the house connections (Table 2, Figs 1 and 2) by means of the SVM-RBF

model are very similar for both the learning sample and the testing sample. Whereas the

results of learning and prognosis by the ANN-RBF method show larger discrepancies

for both types of pipelines. Even though at the learning stage the agreement between the

real and predicted results is satisfactory, the prediction process (using new data) carries

a larger (but still acceptable from the engineering point of view) error. This is evidence

of greater effectiveness of RBF-based training by means of SVMs than ANNs.

However, at the current stage of the research it cannot be explicitly indicated which of

the methods is better and should be widely adopted in the modelling of the failure rate

of water distribution networks. Further research in this area is needed, also on

operational data from other water companies, permitting more in-depth analyses and

broader generalizations.

The prediction results on testing sample concerning house connections and distribu-

tion pipes using other kernel functions by means of SVM model are displayed in the

Figs 3 and 4. Similarly as in learning step, polynomial and sigmoidal functions were
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responsible for the optimal convergence between predicted and experimental values of

indicator �. It is necessary to remember that modelling only tries to imitate the reality. It

is obvious that prediction results could not be exactly the same as experimental data.

The problem is what error level is permitted and assumed at the very beginning of the

modelling. Operating data have sometimes a lot of mistakes. If it is possible one should

cooperate with exploiters to explain inaccuracy and to complete lack of parameters.

Such basic independent variables as: pipeline length, diameter and construction year

were used to model the failure rate of the water supply pipelines. The weights of the

connections between neurons were determined for the selected ANN model. The

ANN-RBF model, describing the failure rate of the house connections, was charac-

terized by the weakest connection between hidden neuron no. 19 and the output signal.

The weight of this connection amounted to –0.09. The highest connection weight value

(1.00) was observed between the input neuron (diameter) and hidden neuron no. 8. This

supports the thesis, advanced in numerous publications [2, 3, 24, 25], that the failure

rate of a pipeline is correlated with its diameter. The ANN-RBF model for the

distribution pipes had a connection between hidden neuron no. 2 and the output signal

(�), with a weight of –4.13. This means that the situation was similar as in the case of

the house connections. The strongest connection was characterized by a weight of 0.90

and occurred between the input signal (length) and hidden neuron no. 3. This means that

the total length of a pipeline of this type for a given year plays a significant role in the

modelling of the failure rate of distribution pipes. In the case of the SVM model,

weights which should be considered jointly with another model parameter, ie capacity,

were determined for the particular SVMs. If the weight of a given SVM is close to the

value of �C, this means that this SVM lies relatively near the hyperplane. If the weight

is equal to �C, the given SVM lies directly on the hyperplane boundary and it is then

referred to as a localized SVM. The SVM-RBF model for the house connections had

capacity C = 1 and the weights of its 14 SVMs were in a range of –1.00–1.00. There

were 7 localized SVMs. The other SVMs had weights ranging from –0.86 to 0.76. The

SVM-RBF model for the distribution mains had capacity C = 3 and the weights of 56

SVMs were in a range of –3.00–3.00. There were 46 localized SVMs. The weights of

the other SVMs ranged from –2.94 to 2.76.
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Fig. 4. Prediction results of distribution pipes’ failure rate – testing
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4. Conclusions

This paper has presented the results of the prediction of the failure rate of the

distribution pipes and house connections in one of the Polish towns, based on

operational data for the years 2001–2012, by means of support vector machines and

artificial neural networks. The subject seems to be of importance for the correct and

quick estimation of the reliability level. The created SVM-RBF and ANN-RBF models

can be useful in cases when it is necessary to determine the failure rate in order to take a

quick decision concerning the planned repairs of conduits. The obtained prediction

results indicate that both the methods can be used to estimate the failure rate of

municipal systems. But, similarly as in the case of other methods, a relatively large

database must be available in order to identify the relevant correlations (training/

learning) and then to test the model. One should bear in mind that each modelling

carries a prediction error. When selecting an optimal model one should not only

consider the achievement of the best possible convergence, but also assess the effect of

an inaccurate estimate. The consequences of a failure of, eg distribution pipes are

incomparably more massive and severe than any damage to house connections.

The results of prediction concerning other kernel functions are also satisfactory. The

SVM models for the distribution pipes using linear, polynomial and sigmoidal kernel

functions were characterized by the weights (without localized vectors) in the range

–8.14 to 6.63, –9.70 to 9.04 and –9.25 to 9.95, respectively. In relation to house

connections the weights without localized vectors) varied in the range –1.86 to –0.23,

–3.26 to 2.69 and –9.89 to 3.09, respectively.

The optimal SVM-RBF model had gamma coefficient amounted to 0.33 for both the

distribution pipes and the house connections while capacity C and the number of SVMs

were respectively 3 and 4 times greater in the case of the model describing the failure

rate of the distribution pipes. The error of the V-fold cross validation amounted to 0.081

and 0.110 for the model describing the failure rate of respectively the distribution pipes

and the house connections. The input signals and the predictors, respectively, in both

the ANN method and the SVM method were the length, diameter and year of laying the

water conduit in the ground. The optimal ANN-RBF model contained 8 and 27 hidden

neurons for respectively distribution pipes and house connections. The correlation and

determination coefficients are slightly higher at the stage of learning the artificial neural

network than during prognosis. The obtained modelling results can be in still better

agreement with the real data. This would increase the quality of the decisions concer-

ning, eg the planning of replacements and renewals of pipeline sections. The accuracy

of the modelling can be increased by adding more predicators of, eg the conduit

material, the number of failures or the pressure prevailing in the pipeline, to the vector

of independent variables. However, it is not always possible to obtain such data due to

the fact that water companies do not record all their operational information. It should

be noted that the situation is improving by the year and the operators increasingly often

use the GIS database, which facilitates data acquisition and analysis. Therefore, further

studies aimed at determining such independent variables which will be proper

parameters for the correct prediction of the failure rate by SVMs and ANNs are needed.
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PRZEWIDYWANIE WSKA�NIKA AWARYJNOŒCI PRZEWODÓW WODOCI¥GOWYCH

– WEKTORY NOŒNE ORAZ SIECI NEURONOWE

Wydzia³ In¿ynierii Œrodowiska

Politechnika Wroc³awska, Wroc³aw

Abstrakt: W pracy przedstawiono mo¿liwoœæ zastosowania metody wektorów noœnych (SVM) oraz

sztucznych sieci neuronowych (SSN) opartych na radialnych funkcjach bazowych do przewidywania

wskaŸnika intensywnoœci uszkodzeñ przewodów wodoci¹gowych. Metoda wektorów noœnych jest algoryt-

mem, za pomoc¹ którego dokonuje siê regresji i klasyfikacji z uwzglêdnieniem nieliniowej przestrzeni

decyzyjnej. Ta hiperp³aszczyzna dzieli ca³y obszar w taki sposób, ¿e obiekty o ró¿nej przynale¿noœci s¹ od

siebie oddzielone. Natomiast w przypadku sieci neuronowych ka¿dy z neuronów modeluje tzw. gaussowsk¹

powierzchniê odpowiedzi. Informacje z wejœæ przekazywane s¹ funkcji bazowej, a ka¿dy neuron oblicza

odleg³oœæ euklidesow¹ miêdzy wektorami wejœciowymi, wzorcowymi i wyjœciowymi. Przewidywanie

wskaŸnika intensywnoœci uszkodzeñ przewodów rozdzielczych i przy³¹czy wykonano na podstawie danych

eksploatacyjnych z lat 2001–2012. W przypadku obydwu metod zmiennymi niezale¿nymi by³y: d³ugoœæ,

œrednica oraz rok budowy przewodów rozdzielczych i przy³¹czy. Obliczenia przeprowadzono w programie

Statistica 12.0. Model SVM dla przy³¹czy i przewodów rozdzielczych posiada³ odpowiednio 14 wektorów

noœnych, w tym 7 zwi¹zanych oraz 56 w tym 46 zwi¹zanych. Model SSN zawiera³ 8 i 27 neuronów ukrytych

odpowiednio w odniesieniu do przewodów rozdzielczych i przy³¹czy.

S³owa kluczowe: metody regresyjne, ruroci¹gi, modelowanie, radialne funkcje bazowe
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