Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a comparative analysis of two Tustin-based discretization schemes for fractional-order derivative. The first one is based on a continuous fractional expansion (CFE) and the second one is an approximation based on the Tustin-Muir recursive formula.
Słowa kluczowe
Rocznik
Tom
Strony
19--22
Opis fizyczny
Bibliogr. 4 poz., rys., tab.
Bibliografia
- [1] CHEN Y.Q., MOORE K.L.: Discretization Schemes for Fractional-Order Differentiators and Integrators, IEEE Transactions on Circuits and Systems, Fundamental Theory and Applications, Vol. 49, No 3, March 2002.
- [2] CHEN Y.Q., VINAGRE B.M., PODLUBNY I.: Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives – an Expository Review Nonlinear Dynamics, No 38, pp 155–170, 2004.
- [3] STANISŁAWSKI R., LATAWIEC K.J., ŁUKANISZYN M.: A Comparative Analysis of Laguerre-Based Approximators to the Grünwald-Letnikov Fractional-Order Difference, Mathematical Problems in Engineering, March 2015.
- [4] VINAGRE B.M., CHEN Y.Q., PETRÁŠ I.: Two direct Tustin discretization methods for fractional-order differentiator/integrator, Journal of the Franklin Institute, Engineering and Applied Mathematics, Vol. 340, No 5, pp 349–362, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1ad62b1-715a-4d2c-bc61-0b28f9fbda6f