Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Watershed transformation frequently produces over-segmented images. The authors propose a solution to this problem. It utilizes hierarchical cluster analysis for grouping watersheds which are treated as objects characterized by a number of attributes. Initially the watershed merging method was meant only for gray-scale images, but later it was adapted for colour images. This paper presents further extension of the method that allows it to either automatically select the numberof classes or to provide a hint as to which numbers in a specified range should be considered first.Segmentation quality assessment functions for colour images are presented. The results obtained using an extended watershed merging method are discussed. The examples of segmentations selected by the method, along with the graphs of assessment functions, are shown.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
89--97
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
autor
- Institute of Computer Science, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, ul. Nadbystrzycka 36b, 20-618 Lublin, Poland
autor
- Institute of Computer Science, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, ul. Nadbystrzycka 36b, 20-618 Lublin, Poland
Bibliografia
- [1] Smołka J., Hierarchical cluster analysis methods applied to image segmentation by watershed merging, Annales UMCS Informatica AI 6 (2007): 73.
- [2] Smołka J., Skublewska-Paszkowska M., Watershed merging method for color images, Annales UMCS Informatica AI 8 (1) (2008): 111.
- [3] Romesburg H. C., Cluster Analysis for Researchers, Lulu Press (2004).
- [4] Everitt B. S., Landau S., Leese M., Cluster Analysis, Arnold (2001).
- [5] Liu J., Yang Y.-H., Multiresolution Color Image Segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence 16 (7) (1994): 689.
- [6] Zhang H., Fritts J. E., Goldman S. A., Image segmentation evaluation: A survey of unsupervised methods, Computer Vision and Image Understanding 110 (2) (2008): 260.
- [7] Borsotti M., Campadelli P., Schettini R., Quantitative evaluation of color image segmentation results, Pattern Recognition Letters 19 (1998): 741.
- [8] Whitaker R. S., Xue X., Variable-conductance, level-set curvature for image denoising, Proceedings of 3’rd International Conference on Image Processing (2001): 142.
- [9] Ibanez L., Schroeder W., Ng L., Cates J., et al., The ITK Software Guide, Kitware Inc. (2005).
- [10] Cumani A., Edge detection in multispectral images, CVGIP: Graphical Models and Image Processing 53 (1) (1991): 40.
- [11] Zenzo S. D., A note on the gradient of a multi-image, Computer Vision, Graphics, and Image Processing 33 (1) (1986): 116.
- [12] Scheunders P., Sijbers J., Multiscale watershed segmentation of multivalued images, 16th International Conference on Pattern Recognition 3 (855) (2002).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1ac0a49-4401-4000-a58f-1485fd3e81ff