PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of the road pavement condition index using stochastic models

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Prognozowanie wskaźnika stanu nawierzchni drogowych z zastosowaniem modeli stochastycznych
Języki publikacji
PL EN
Abstrakty
PL
W artykule omówiono modele matematyczne prognozowania stanu sieci drogowej z zastosowaniem tzw. łańcuchów Markowa. Dane do obliczeń elementów macierzy przejścia pomiędzy stanami są uzyskiwane na podstawie oceny wizualnej oraz w wyniku pomiarów instrumentalnych. Zalecane jest przygotowanie zestawów danych w postaci tablic systemu zarządzania stanem nawierzchni drogowej sporządzanych na podstawie reprezentatywnej próby odcinków pomiarowych. Macierze przejścia pomiędzy stanami są tworzone w przedziałach czasu o długości jednego roku. W artykule przedstawiono także procedurę tworzenia macierzy przejścia na podstawie częściowo niepełnych zestawów danych, w których wykorzystano informacje o wcześniejszym stanie nawierzchni oraz wyniki pomiarów instrumentalnych, pozwalających na skorygowanie prognozowanych wartości. Uzyskana ostatecznie macierz uwzględnia nie tylko prawdopodobieństwo, lecz również prędkość przejścia pomiędzy stanami. Ponadto możliwe jest także przetwarzanie danych wejściowych z odpowiednich baz lub ich wykorzystanie przy zastosowaniu innego oprogramowania.
EN
Mathematical models for prediction of road network condition based on the so-called Markov chains are presented in this article. The data for calculation of elements of the transition matrix from one condition to another are taken from visual evaluation as well as from instrumental reading. It is recommended to prepare data sets in the form of pavement management system data tables based on a representative sample of measuring sections. Discrete time intervals – of one year – are used when constructing the model of transition matrices. The procedure of forming Markov transition matrix with partially complete data sets is proposed also in paper. The basis of this procedure is information on the previous condition of the structure and the results of the instrumental evaluation, which enables correction of the predicted values. The final matrix takes into account not only the probability, but also the speed of transition from one condition to another. It is also possible to work with the initial data using appropriate databases or other software.
Rocznik
Strony
225--242
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Kharkiv National Automobile and Highway University, Road-Construction Faculty, Department of Highway Design, Geodesy and Land Management, 25 Yaroslava Mudroho St., Kharkiv, Ukraine, 61002
  • Kharkiv National Automobile and Highway University, Road-Construction Faculty, Department of Highway Design, Geodesy and Land Management, 25 Yaroslava Mudroho St., Kharkiv, Ukraine, 61002
  • V. Karazin National University, Radiophysics Biomedical Electronics and Computer Systems Faculty, Department of Theoretical Radiophysics, 4 Svobody Sq., Kharkiv, Ukraine, 61022
  • O.M. Beketov National University of Urban Economy in Kharkiv, Department of Land Administration and Geoinformation Systems, 17 Marshal Bazhanov St., Kharkiv, Ukraine, 61002
  • Kharkiv National Automobile and Highway University, Department of Foreign Languages, Kharkiv, Ukraine
Bibliografia
  • 1. Batrakova A.G., Batrakov D.O., Antyufeyeva M.S.: Pavement deterioration model based on GPR datasets. Roads and Bridges - Drogi i Mosty, 17, 1, 2018, 55-71, DOI: 10.7409/rabdim.018.004
  • 2. Jol H.M. (Ed.): Ground penetrating radar: theory and applications. Elsevier Science, Amsterdam, 2009, 508 p.
  • 3. Sudyka J., Krysiński L.: Radar technique application in structural analysis and identification of interlayer bonding. International Journal of Pavement Research and Technology, 4, 3, 2011, 176-184
  • 4. Evans R.D.: Optimising Ground Penetrating Radar (GPR) to Assess Pavements. A dissertation thesis submitted in partial fulfillment of the requirements for the award of the degree Doctor of Engineering at Loughborough University, 2009, 219 p.
  • 5. Zieliński A., Mazurkiewicz E., Łyskowski M., Wieczorek D.: Use of GPR method for investigation of the mass movements development on the basis of the landslide in Kałków. Roads and Bridges - Drogi i Mosty, 15, 1, 2016, 61-70, DOI: 10.7409/rabdim.016.004
  • 6. Lachowicz J., Rucka M.: Numerical modeling of GPR field in damage detection of a reinforced concrete footbridge. Diagnostyka, 17, 2, 2016, 3-8
  • 7. Pochanin G.P., Masalov S.A., Ruban V.P., Kholod P.V., Batrakov D.O., Batrakova A.G., Urdzik S.N., Pochanin O.G.: Advances in Short Range Distance and Permittivity Ground Penetrating Radar Measurements for Road Surface Surveying, in: Advanced Ultrawideband Radar: Signals, Targets and Applications. CRC Press - Taylor & Francis Group, London, 2016, 20-65
  • 8. Batrakov D.O., Antyufeyeva M.S., Antyufeyev A.V., Batrakova A.G.: UWB signal processing during thin layers thickness assessment. 2016 IEEE Radar Methods and Systems Workshop, September 27-28, 2016, Kyiv, Ukraine, 36-39
  • 9. Batrakov D.O., Batrakova A.G.: Combined GPR data analysis technique for diagnostics of structures with thin near-surface layers. Diagnostyka, 19, 3, 2018, 11-20, DOI: 10.29354/diag/91489
  • 10. Moavebzadeh F.: Stochastic Model for Prediction of Pavement Performance. Transportation Research Record, 575, 1976, 56-72
  • 11. Madanat S., Karlaftis M.G., McCarthy P.S.: Probabilistic Infrastructure Deterioration Models with Panel Data. Journal of Infrastructure Systems, 3, 1, 1997, 4-9
  • 12. Gharaibeh N.G., Darter M.I.: Probabilistic Analysis of Highway Pavement Life for Illinois. Transportation Research Record, 1823, 2002, 111-120
  • 13. Madanat S., Bulusu S., Mahmoud A.: Estimation of Infrastructure Distress Initiation and Progression Models. Journal of Infrastructure Systems, 1, 3. 1995, 146-150
  • 14. Sas W., Głuchowski A.: Rutting prediction for stabilized soils based on the cyclic CBR test. Roads and Bridges - Drogi i Mosty, 12, 4, 2013, 411-423, DOI: 10.7409/rabdim.013.026
  • 15. Kobayashi K., Do M., Han D.: Estimation of Markovian transition probabilities for pavement deterioration forecasting. KSCE Journal of Civil Engineering, 14, 3, 2010, 343-351
  • 16. Marović I., Androjić I., Jajac N., Hanák T.: Urban Road Infrastructure Maintenance Planning with Application of Neural Networks. Complexity, vol. 2018, 2018, Article ID 5160417, 10 p.
  • 17. Moazami D., Behbahani H., Muniandy R.: Pavement rehabilitation and maintenance prioritization of urban roads using fuzzy logic. Expert Systems with Applications, 38, 10, 2011, 12869-12879
  • 18. Wang F., Zhang Z., Machemehl R.: Decision-making problem for managing pavement maintenance and rehabilitation projects. Transportation Research Record: Journal of the Transportation Research Board, 1853, 2003, 21-28
  • 19. Zimmerman K., Peshkin D.: Issues in integrating pavement management and preventive maintenance. Transportation Research Record: Journal of the Transportation Research Board, 1889, 2004, 13-20
  • 20. Sołowczuk A., Gardas P., Schab M.: Efficiency repair and maintainance works at bus bays and bus stops. Roads and Bridges - Drogi i Mosty, 13, 2, 2014, 157-166, DOI: 10.7409/rabdim.014.011
  • 21. Tjan A., Pitaloka D.: Future prediction of pavement condition using Markov probability transition matrix. Proceedings of the Eastern Asia Society for Transportation Studies, 5, 2005, 772-782
  • 22. Butt A.A., Shahin M.Y., Carpenter S.H., Carnahan J.V.: Application of Markov Process to Pavement Management Systems at Network Level. Proceedings of The Third International Conference on Managing Pavements, San Antonio, Texas, May 22-26, 1994, 89-100
  • 23. Madanat S., Mishalami R., Ibrahim W.H.: Estimation of Infrastructure Transition Probabilities from Condition Rating Data. Journal of Infrastructure Systems, 1, 2, 1995, 120-125
  • 24. Bulusu S., Sinha K.C.: Comparison of Methodologies to Predict Bridge Deterioration. Transportation Research Record, 1597, 1997, 34-42
  • 25. Garcia J.J., Costello S.B., Snaith M.S.: Derivation of Transition Probability Matrices for Pavement Deterioration Modeling. Journal of Transportation Engineering, 132, 2, 2006, 141-161
  • 26. Brown E.R.: Preventive Maintenance of Asphalt Concrete Pavements. Transportation Research Record, 1205, 1988, 6-11
  • 27. Sebaaly P.E., Hajj E.Y.: Effectiveness of preventive maintenance of asphalt pavements. Proceedings of 6th Euroasphalt and Eurobitume Congress, 1-3 June 2016, Prague, Czech Republic, 1-9
  • 28. Batrakova A.G.: Assessment of road pavements condition with the georadar technologies. KhNADU Ed., Kharkiv, 2013, 152 p. (in Russian)
  • 29. Batrakov D.O., Batrakova A.G., Golovin D.V.: Numerical simulation of UWB impulse response of plane layered media with 2D inclusion. Proceedings of The 6 International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS), 17-21 Sept. 2012, Sevastopol, 153-155, DOI: 10.1109/UWBUSIS.2012.6379763
  • 30. Batrakov D.O., Zhuk N.P.: Method for testing of layer-non-homogeneous dielectrics using numerical solution of reverse problem dialing with dissipation in polarization parameters domain. Defektoskopiya (Russian Journal of Nondestructive Testing), 6, 1994, 82-87
  • 31. Sudyka J., Krysiński L.: Evaluation of Homogeneity of Thickness of New Asphalt Layers Using GPR. IOP Conference Series Materials Science and Engineering “Resilient and Safe Road Infrastructure”, 8-9 May 2018, Kielce, 356, 1, 2018, 1-10, DOI: 10.1088/1757-899X/356/1/012025
  • 32. Saarenketo T.: Electrical Properties of Road Materials and Subgrade Soils and the Use of Ground Penetrating Radar in Traffic Infrastructure Surveys, Faculty of Science, Department of Geosciences, University of Oulu, Academic dissertation, 2006, 125 p.
  • 33. Krysiński L., Sudyka J.: Typology of reflections in the assessment of the interlayer bonding condition of the bituminous pavement by the use of an impulse high-frequency ground-penetrating radar. Nondestructive Testing and Evaluation, 27, 3, 2012, 219-227
  • 34. Tarefder R.A., Ahmed M.U.: Ground penetrating radar for measuring thickness of an unbound layer of a pavement. Advances in Intelligent Systems and Computing, 598, 2018, 160-167
  • 35. Batrakov D.O., Antyufeyeva M.S., Antyufeyev A.V., Batrakova A.G.: Inverse problems and UWB signals in biomedical engineering and remote sensing. Proceedings of The 8th International Conference on Ultrawideband and Ultrashort Impulse Signals, 5-11 September 2016, Odessa, Ukraine, 148-151
  • 36. Batrakov D.O.: Quality and efficiency of information monitoring at radio wave testing of inhomogeneous dielectric layers by using a multifrequency method. Defektoskopiya, 8, 1998, 68-76
  • 37. Zhuck N.P., Batrakov D.O.: Determination of Electro- physical Properties of a Layered Structure With a Statistically Rough Surface via an Inversion Method. Physical Review B, 51, 23, 1995, 17073-17080
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1a8baa2-0011-4ab9-a32b-de0efb5ff665
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.