PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative analysis of supercritical CO2 cycles

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presents a simulation of three different configurations of super critical CO2 cycles: pre-compression, partial cooling, and recompression performed using commercially available software (Ebsilon). The highest thermal efficiency is obtained for the recompression cycle (35%). All three cycles operate at 700°C. In addition to enjoying the highest efficiency, the recompression cycle involves a moderate number of elements - just one heat exchanger more than the simplest cycle (Pre-compression).
Rocznik
Strony
79--97
Opis fizyczny
Bibliogr. 92 poz., rys., tab., wykr.
Twórcy
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 00-665 Warsaw, 21/25 Nowowiejska Street, Poland
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 00-665 Warsaw, 21/25 Nowowiejska Street, Poland
autor
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 00-665 Warsaw, 21/25 Nowowiejska Street, Poland
autor
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 00-665 Warsaw, 21/25 Nowowiejska Street, Poland
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 00-665 Warsaw, 21/25 Nowowiejska Street, Poland
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 00-665 Warsaw, 21/25 Nowowiejska Street, Poland
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 00-665 Warsaw, 21/25 Nowowiejska Street, Poland
Bibliografia
  • [1] Bartnik R, Buryn Z, Hnydiuk-Stefan A, Juszczak A. Methodology and a Continuous Time Mathematical Model for Selecting the Optimum Capacity of a Heat Accumulator Integrated with a {CHP} Plant. Energies 2018;11:1240. https://doi.org/10.3390/en11051240.
  • [2] Plis M, Rusinowski H. A mathematical model of an existing gas-steam combined heat and power plant for thermal diagnostic systems. Energy 2018;156:606-19. https://doi.org/10.1016/j.energy.2018.05.113.
  • [3] Wu M, Zhang H, Liao T. Performance assessment of an integrated molten carbonate fuel cell-thermoelectric devices hybrid system for combined power and cooling purposes. Int J Hydrogen Energy 2017;42:30156–65. https://doi.org/10.1016/J.IJHYDENE.2017.10.114.
  • [4] Kotowicz J, Bartela Ł, Dubiel-Jurgaś K. Analysis of energy storage system with distributed hydrogen production and gas turbine. Arch Thermodyn 2017;Vol. 38:65-87. https://doi.org/10.1515/AOTER-2017-0025.
  • [5] Comparison of the Brayton–Brayton Cycle with the Brayton-Diesel Cycle Journal of Power Technologies n.d.
  • [6] Bonaventura D, Chacartegui R, Valverde JM, Becerra JA, Ortiz C, Lizana J. Dry carbonate process for CO2 capture and storage: Integration with solar thermal power. Renew Sustain Energy Rev 2018;82:1796-812. https://doi.org/10.1016/J.RSER.2017.06.061.
  • [7] Siddiqui O, Dincer I. Analysis and performance assessment of a new solar-based multigeneration system integrated with ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle. J Power Sources 2017;370:138-54. https://doi.org/10.1016/J.JPOWSOUR.2017.10.008.
  • [8] Clúa JGG, Mantz RJ, Battista H De. Optimal sizing of a grid-assisted wind-hydrogen system. Energy Convers Manag 2018;166:402-8. https://doi.org/10.1016/j.enconman.2018.04.047.
  • [9] Abdalla AM, Hossain S, Azad AT, Petra PMI, Begum F, Eriksson SG, et al. Nanomaterials for solid oxide fuel cells: A review. Renew Sustain Energy Rev 2018;82:353-68. https://doi.org/10.1016/J.RSER.2017.09.046.
  • [10] Abedin MJ, Masjuki HH, Kalam MA, Sanjid A, Rahman SMA, Masum BM. Energy balance of internal combustion engines using alternative fuels. Renew Sustain Energy Rev 2013;26:20-33.
  • [11] Accardo G, Frattini D, Yoon SP, Ham HC, Nam SW. Performance and properties of anodes reinforced with metal oxide nanoparticles for molten carbonate fuel cells. J Power Sources 2017;370:52-60. https://doi.org/10.1016/J.JPOWSOUR.2017.10.015.
  • [12] Pianko-Oprych P, Hosseini SM. Dynamic Analysis of Load Operations of Two-Stage SOFC Stacks Power Generation System. Energies 2017, Vol 10, Page 2103 2017;10:2103. https://doi.org/10.3390/EN10122103.
  • [13] Azizi MA, Brouwer J. Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization. Appl Energy 2018;215:237–89. https://doi.org/10.1016/J.APENERGY.2018.01.098.
  • [14] Badur J, Lemański M, Kowalczyk T, Ziółkowski P, Kornet S. Verification of zero-dimensional model of SOFC with internal fuel reforming for complex hybrid energy cycles. Chem Process Eng 2018;Vol. 39:113-128. https://doi.org/10.24425/119103.
  • [15] Barelli L, Bidini G, Cinti G, Ottaviano A. Study of SOFC-SOE transition on a RSOFC stack. Int J Hydrogen Energy 2017;42:26037-47. https://doi.org/10.1016/J.IJHYDENE.2017.08.159.
  • [16] Campanella S, Bracconi M, Donazzi A. A fast regression model for the interpretation of electrochemical impedance spectra of Intermediate Temperature Solid Oxide Fuel Cells. J Electroanal Chem 2018;823:697-712. https://doi.org/10.1016/j.jelechem.2018.06.037.
  • [17] Chakravorty J, Sharma G, Bhatia V. Analysis of a DVR with Molten Carbonate Fuel Cell and Fuzzy Logic Control. Technol Appl Sci Res 2018;8:2673-9.
  • [18] Danilov NA, Tarutin AP, Lyagaeva JG, Pikalova EY, Murashkina AA, Medvedev DA, et al. Affinity of YBaCo4O7+δ-based layered cobaltites with protonic conductors of cerate-zirconate family. Ceram Int 2017;43:15418-23. https://doi.org/10.1016/J.CERAMINT.2017.08.083.
  • [19] de Escalona JMM, Escalona M De, José M, de Escalona JMM. The potential of the supercritical carbon dioxide cycle in high temperature fuel cell hybrid systems. Supercrit CO2 Power Cycle Symp 2011.
  • [20] Lorenzo G De, Fragiacomo P. Electrical and thermal analysis of an intermediate temperature {IIR}-{SOFC} system fed by biogas. Energy Sci Eng 2018;6:60-72. https://doi.org/10.1002/ese3.187.
  • [21] Dzierzgowski K, Wachowski S, Gojtowska W, Lewandowska I, Jasiński P, Gazda M, et al. Praseodymium substituted lanthanum orthoniobate: Electrical and structural properties. Ceram Int 2018;44:8210-5. https://doi.org/10.1016/J.CERAMINT.2018.01.270.
  • [22] El-Hay EA, El-Hameed MA, El-Fergany AA. Steady-state and dynamic models of solid oxide fuel cells based on Satin Bowerbird Optimizer. Int J Hydrogen Energy 2018;43:14751–61. https://doi.org/10.1016/j.ijhydene.2018.06.032.
  • [23] Ferrel-Álvarez AC, Domínguez-Crespo MA, Cong H, Torres-Huerta AM, Brachetti-Sibaja SB, De La Cruz W. Synthesis and surface characterization of the La0.7-xPrxCa0.3MnO3 (LPCM) perovskite by a non-conventional microwave irradiation method. J Alloys Compd 2018;735:1750-8. https://doi.org/10.1016/J.JALLCOM.2017.11.306.
  • [24] Genc O, Toros S, Timurkutluk B. Geometric optimization of an ejector for a 4 kW SOFC system with anode off-gas recycle. Int J Hydrogen Energy 2018;43:9413-22. https://doi.org/10.1016/J.IJHYDENE.2018.03.213.
  • [25] Jienkulsawad P, Saebea D, Patcharavorachot Y, Kheawhom S, Arpornwichanop A. Analysis of a solid oxide fuel cell and a molten carbonate fuel cell integrated system with different configurations. Int J Hydrogen Energy 2018;43:932-42. https://doi.org/10.1016/J.IJHYDENE.2017.10.168.
  • [26] Kupecki J, Motyliński K, Skrzypkiewicz M, Wierzbicki M, Naumovich Y. Preliminary electrochemical characterization of anode supported solid oxide cell (AS-SOC) produced in the Institute of Power Engineering operated in electrolysis mode (SOEC). Arch Thermodyn 2017;Vol. 38:53-63. https://doi.org/10.1515/AOTER-2017-0024.
  • [27] Kupecki J, Skrzypkiewicz M, Motylinski K. Variant analysis of the efficiency of industrial scale power station based on DC-SOFCs and DC-MCFCs. Energy 2018;156:292-8. https://doi.org/10.1016/j.energy.2018.05.078.
  • [28] Ławryńczuk M. Towards Reduced-Order Models of Solid Oxide Fuel Cell. Complexity 2018;2018. https://doi.org/10.1155/2018/6021249.
  • [29] Lee D, Cheon Y, Ryu JH, Lee IB. An MCFC operation optimization strategy based on PID auto-tuning control. Int J Hydrogen Energy 2017;42:25518-30. https://doi.org/10.1016/J.IJHYDENE.2017.08.184.
  • [30] Li Y, Zhang W, Zheng Y, Chen J, Yu B, Chen Y, et al. Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability. Chem Soc Rev 2017;46:6345–78. https://doi.org/10.1039/C7CS00120G.
  • [31] Lyagaeva J, Danilov N, Tarutin A, Vdovin G, Medvedev D, Demin A, et al. Designing a protonic ceramic fuel cell with novel electrochemically active oxygen electrodes based on doped Nd0.5Ba0.5FeO3-$\updelta$. Dalt Trans 2018;47:8149-57. https://doi.org/10.1039/c8dt01511b.
  • [32] A. McClung K. Brun, Chordia L. Technical and economic evaluation of supercritical oxy-combustion for power generation. 4th Int Symp - Supercrit CO2 Power Cycles 2014.
  • [33] Nadar A, Banerjee AM, Pai MR, Pai R V., Meena SS, Tewari R, et al. Catalytic properties of dispersed iron oxides Fe2O3/MO2 (M = Zr, Ce, Ti and Si) for sulfuric acid decomposition reaction: Role of support. Int J Hydrogen Energy 2018;43:37-52. https://doi.org/10.1016/J.IJHYDENE.2017.10.163.
  • [34] Peksen M. Safe heating-up of a full scale SOFC system using 3D multiphysics modelling optimisation. Int J Hydrogen Energy 2018;43:354-62. https://doi.org/10.1016/J.IJHYDENE.2017.11.026.
  • [35] Prokop TA, Berent K, Iwai H, Szmyd JS, Brus G. A three-dimensional heterogeneity analysis of electrochemical energy conversion in {SOFC} anodes using electron nanotomography and mathematical modeling. Int J Hydrogen Energy 2018;43:10016-30. https://doi.org/10.1016/j.ijhydene.2018.04.023.
  • [36] Zheng Y, Luo Y, Shi Y, Cai N. Dynamic Processes of Mode Switching in Reversible Solid Oxide Fuel Cells. J Energy Eng 2017;143:04017057. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000482.
  • [37] Fukuzumi S, Lee Y, ChemSusChem WN-, 2017 undefined. Fuel production from seawater and fuel cells using seawater. CbsEwhaAcKr n.d.
  • [38] Senseni AZ, Meshkani F, Fattahi SMS, Rezaei M. A theoretical and experimental study of glycerol steam reforming over Rh/{MgAl} 2 O 4 catalysts. Energy Convers Manag 2017;154:127–37. https://doi.org/10.1016/j.enconman.2017.10.033.
  • [39] Xing X, and Jin Lin, Song Y, Zhou Y, Mu S, Hu Q, et al. Modeling and operation of the power-to-gas system for renewables integration: a review. {CSEE} J Power Energy Syst 2018;4:168–78. https://doi.org/10.17775/cseejpes.2018.00260.
  • [40] Zhuang Q, Geddis P, Runstedtler A, Clements B. An integrated natural gas power cycle using hydrogen and carbon fuel cells. Fuel 2017;209:76-84. https://doi.org/10.1016/J.FUEL.2017.07.080.
  • [41] Chen Y, Mojica F, Li G, Chuang P-YA. Experimental study and analytical modeling of an alkaline water electrolysis cell. Int J Energy Res 2017;41:2365-73. https://doi.org/10.1002/ER.3806.
  • [42] Zhang C, Liu Q, Wu Q, Zheng Y, Zhou J, Tu Z, et al. Modelling of solid oxide electrolyser cell using extreme learning machine. Electrochim Acta 2017;251:137-44. https://doi.org/10.1016/J.ELECTACTA.2017.08.113.
  • [43] Krawczyk P, Szabłowski Ł, Karellas S, Kakaras E, Badyda K. Comparative thermodynamic analysis of compressed air and liquid air energy storage systems. Energy 2018;142:46-54. https://doi.org/10.1016/J.ENERGY.2017.07.078.
  • [44] Szablowski L, Krawczyk P, Badyda K, Karellas S, Kakaras E, Bujalski W. Energy and exergy analysis of adiabatic compressed air energy storage system. Energy 2017;138:12-8. https://doi.org/10.1016/J.ENERGY.2017.07.055.
  • [45] Venkataramani G, Ramalingam V, Viswanathan K. Harnessing Free Energy From Nature For Efficient Operation of Compressed Air Energy Storage System and Unlocking the Potential of Renewable Power Generation. Sci Rep 2018;8. https://doi.org/10.1038/s41598-018-28025-5.
  • [46] Leśko M, Bujalski W. Modeling of district heating networks for the purpose of operational optimization with thermal energy storage. Arch Thermodyn 2017;Vol. 38:139-163. https://doi.org/10.1515/AOTER-2017-0029.
  • [47] Olivier P, Bourasseau C, Bouamama PB. Low-temperature electrolysis system modelling: A review. Renew Sustain Energy Rev 2017;78:280-300. https://doi.org/10.1016/J.RSER.2017.03.099.
  • [48] Samanta S, Ghosh S. Techno-economic assessment of a repowering scheme for a coal fired power plant through upstream integration of SOFC and downstream integration of MCFC. Int J Greenh Gas Control 2017;64:234-45. https://doi.org/10.1016/J.IJGGC.2017.07.020.
  • [49] Feher EG. The supercritical thermodynamic power cycle. Energy Convers 1968;8:85-90. https://doi.org/http://dx.doi.org/10.1016/0013-7480(68)90105-8.
  • [50] Dostal V, Driscoll MJ, Hejzar P. A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors. Adv Nucl Power Technol Progr 2004.
  • [51] Driscoll MJ. Supercritical CO2 Plant Cost Assessment 2004.
  • [52] Chen Y, Lundqvist P, Johansson A, Platell P. A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with {R123} as working fluid in waste heat recovery. Appl Therm Eng 2006;26:2142-7. https://doi.org/http://dx.doi.org/10.1016/j.applthermaleng.2006.04.009.
  • [53] Vidhi R, Goswami DY, Chen H, Stefanakos E, Kuravi S, Sabau AS. Study of supercritical carbon dioxide power cycle for low grade heat conversion. Proc SCO2 Power Cycle Symp 2011:0-7.
  • [54] Akbari AD, Mahmoudi SMS. Thermoeconomic analysis and optimization of the combined supercritical {CO2} (carbon dioxide) recompression Brayton/organic Rankine cycle. Energy 2014;78:501-12. https://doi.org/http://dx.doi.org/10.1016/j.energy.2014.10.037.
  • [55] Wang J, Sun Z, Dai Y, Ma S. Parametric optimization design for supercritical {CO2} power cycle using genetic algorithm and artificial neural network. Appl Energy 2010;87:1317-24. https://doi.org/http://dx.doi.org/10.1016/j.apenergy.2009.07.017.
  • [56] Bryant JC, Saari H, Zanganeh K. An Analysis and Comparison of the Simple and Recompression Supercritical CO2 Cycles. Supercrit CO2 Power Cycle Symp 2011:1-8.
  • [57] Kim YM, Kim CG, Favrat D. Transcritical or supercritical {CO2} cycles using both low- and high-temperature heat sources. Energy 2012;43:402-15. https://doi.org/http://dx.doi.org/10.1016/j.energy.2012.03.076.
  • [58] Moroz L, Burlaka M, Rudenko O. Study of a Supercritical CO2 Power Cycle Application in a Cogeneration Power Plant n.d.
  • [59] Moisseytsev A, Sienicki JJ. Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor. Nucl Eng Des 2009;239:1362-71. https://doi.org/http://dx.doi.org/10.1016/j.nucengdes.2009.03.017.
  • [60] Pérez-Pichel GD, Linares JI, Herranz LE, Moratilla BY. Thermal analysis of supercritical {CO2} power cycles: Assessment of their suitability to the forthcoming sodium fast reactors. Nucl Eng Des 2012;250:23-34. https://doi.org/http://dx.doi.org/10.1016/j.nucengdes.2012.05.011.
  • [61] Harvego EA, McKellar MG. Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications. ASME 2011 Int Mech Eng Congr Expo IMECE 2011 2012;4:75-81. https://doi.org/10.1115/IMECE2011-63073.
  • [62] Halimi B, Suh KY. Computational analysis of supercritical {CO2} Brayton cycle power conversion system for fusion reactor. Energy Convers Manag 2012;63:38-43. https://doi.org/http://dx.doi.org/10.1016/j.enconman.2012.01.028.
  • [63] Yoon HJ, Ahn Y, Lee JI, Addad Y. Potential advantages of coupling supercritical {CO2} Brayton cycle to water cooled small and medium size reactor. Nucl Eng Des 2012;245:223-32. https://doi.org/http://dx.doi.org/10.1016/j.nucengdes.2012.01.014.
  • [64] Yamaguchi H, Zhang XR, Fujima K, Enomoto M, Sawada N. Solar energy powered Rankine cycle using supercritical {CO2}. Appl Therm Eng 2006;26:2345-54. https://doi.org/http://dx.doi.org/10.1016/j.applthermaleng.2006.02.029.
  • [65] Zhang XR, Yamaguchi H, Uneno D, Fujima K, Enomoto M, Sawada N. Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide. Renew Energy 2006;31:1839-54. https://doi.org/http://dx.doi.org/10.1016/j.renene.2005.09.024.
  • [66] Zhang XR, Yamaguchi H, Uneno D. Experimental study on the performance of solar Rankine system using supercritical CO2. Renew Energy 2007;32:2617-28. https://doi.org/10.1016/J.RENENE.2007.01.003.
  • [67] Liu J, Chen H, Xu Y, Wang L, Tan C. A solar energy storage and power generation system based on supercritical carbon dioxide. Renew Energy 2014;64:43-51. https://doi.org/http://dx.doi.org/10.1016/j.renene.2013.10.045.
  • [68] Iverson BD, Conboy TM, Pasch JJ, Kruizenga AM. Supercritical CO2 Brayton cycles for solar-thermal energy. Appl Energy 2013;111:957-70.
  • [69] Padilla RV, Too YCS, Benito R, Stein W. Exergetic analysis of supercritical {CO2} Brayton cycles integrated with solar central receivers. Appl Energy 2015;148:348-65. https://doi.org/http://dx.doi.org/10.1016/j.apenergy.2015.03.090.
  • [70] Cheang VT, Hedderwick RA, McGregor C. Benchmarking supercritical carbon dioxide cycles against steam Rankine cycles for Concentrated Solar Power. Sol Energy 2015;113:199-211. https://doi.org/http://dx.doi.org/10.1016/j.solener.2014.12.016.
  • [71] Czelej K, Cwieka K, Colmenares JC, Kurzydlowski KJ. Atomistic insight into the electrode reaction mechanism of the cathode in molten carbonate fuel cells. J Mater Chem A 2017;5:13763-8. https://doi.org/10.1039/C7TA02011B.
  • [72] Sánchez D, Chacartegui R, Jiménez-Espadafor F, Sánchez T. A New Concept for High Temperature Fuel Cell Hybrid Systems Using Supercritical Carbon Dioxide. J Fuel Cell Sci Technol 2009;6:1-11.
  • [73] de Escalona JMM. The potential of the supercritical carbon dioxide cycle in high temperature fuel cell hybrid systems. Supercrit CO2 Power Cycle Symp 2011.
  • [74] Bae SJ, Ahn Y, Lee J, Lee JI. Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application. J Power Sources 2014;270:608-18. https://doi.org/10.1016/j.jpowsour.2014.07.121.
  • [75] Grzebielec A, Rusowicz A, Szelągowski A. Air purification in industrial plants producing automotive rubber components in terms of energy efficiency. Open Eng 2017;7:106-14. https://doi.org/10.1515/ENG-2017-0015.
  • [76] Le Moullec Y. Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle. Energy 2013;49:32-46. https://doi.org/10.1016/J.ENERGY.2012.10.022.
  • [77] Audasso E, Nam S, Arato E, Bosio B. Preliminary model and validation of molten carbonate fuel cell kinetics under sulphur poisoning. J Power Sources 2017;352:216-25. https://doi.org/10.1016/J.JPOWSOUR.2017.03.091.
  • [78] Le Moullec Y. Conception of a Pulverized Coal Fired Power Plant with Carbon Capture around a Supercritical Carbon Dioxide Brayton Cycle. Energy Procedia 2013;37:1180-6. https://doi.org/10.1016/J.EGYPRO.2013.05.215.
  • [79] Chen Y, Lundqvist P, Johansson A, Platell P. A comparative study of the carbon dioxide transcritical power cycle compared with an organic Rankine cycle with R123 as working fluid in waste heat recovery. Appl Therm Eng 2006;26:2142-7.
  • [80] Chen Y, Lundqvist P, Platell P. Theoretical research of carbon dioxide power cycle application in automobile industry to reduce vehicle’s fuel consumption. Appl Therm Eng 2005;25:2041-53. https://doi.org/http://dx.doi.org/10.1016/j.applthermaleng.2005.02.001.
  • [81] Vaclav Dostal by, Coderre JA. A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors Certified by A A Chairman, Department Committee on Graduate Students. Dipl Ing, Mech Eng 2000.
  • [82] Chapman D, Arias D. An Assessment of the Supercritical Carbon Dioxide Cycle for Use in a Solar Parabolic Trough Power Plant. Proc o SCCO2 Power Cycle Symp 2009.
  • [83] Vidhi R, Goswami YD, Chen H, Stefanakos E, Kuravi S, Sabau AS. Study of Supercritical Carbon Dioxide Power Cycle for Low Grade Heat Conversion 2011.
  • [84] Angelino G. Carbon Dioxide Condensation Cycles for Power Production. ASME Pap No 68-GT-23 1968.
  • [85] Oda E, Abdelsalam A, … MA-W-ASE, 2017 undefined. Distributed generations planning using flower pollination algorithm for enhancing distribution system voltage stability. Elsevier n.d.
  • [86] Sultana S, Roy PK. Krill herd algorithm for optimal location of distributed generator in radial distribution system. Appl Soft Comput 2016;40:391-404. https://doi.org/10.1016/J.ASOC.2015.11.036.
  • [87] Kansal S, Kumar V, Tyagi B. Hybrid approach for optimal placement of multiple DGs of multiple types in distribution networks. Int J Electr Power Energy Syst 2016;75:226-35. https://doi.org/10.1016/J.IJEPES.2015.09.002.
  • [88] El-Fergany A. Multi-objective Allocation of Multi-type Distributed Generators along Distribution Networks Using Backtracking Search Algorithm and Fuzzy Expert Rules. Http://DxDoiOrg/101080/1532500820151102989 2015;44:252-67. https://doi.org/10.1080/15325008.2015.1102989.
  • [89] Rajendran A, Narayanan K. Optimal multiple installation of DG and capacitor for energy loss reduction and loadability enhancement in the radial distribution network using the hybrid WIPSO–GSA algorithm. Https://DoiOrg/101080/0143075020181451371 2018;41:129-41. https://doi.org/10.1080/01430750.2018.1451371.
  • [90] Rama Prabha D, Jayabarathi T. Optimal placement and sizing of multiple distributed generating units in distribution networks by invasive weed optimization algorithm. Ain Shams Eng J 2016;7:683-94. https://doi.org/10.1016/J.ASEJ.2015.05.014.
  • [91] Ganguly S, Samajpati D. Distributed generation allocation with on-load tap changer on radial distribution networks using adaptive genetic algorithm. Appl Soft Comput 2017;59:45-67. https://doi.org/10.1016/J.ASOC.2017.05.041.
  • [92] Tolba MA, Zaki Diab AA, Vanin AS, Tulsky VN, Abdelaziz AY. Integration of Renewable Distributed Generation in Distribution Networks Including a Practical Case Study Based on a Hybrid PSOGSA Optimization Algorithm. Https://DoiOrg/101080/1532500820181532470 2019;46:2103–16. https://doi.org/10.1080/15325008.2018.1532470.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1a65e20-fda8-4c77-8ab2-b24d5c68f0bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.