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INTRODUCTION

Groundwater is one of the most valuable natu-
ral resources and its use in many sectors has made 
it a part of the daily lives of millions of people. In 
addition, the steady and rapid growth in demand 
for groundwater has placed enormous pressure on 
groundwater supply and adequacy, raising serious 
concerns about groundwater sustainability and eco-
system behavior (Benhamiche et al, 2014). Accord-
ing to the literature (Santanu Mallikune et al, (2021) 

and (Tomas et al, 2017), human activities and many 
chemical reactions that occur in the aquifer, soil 
interaction with accumulated water, aquifer rocks 
and other processes are among the most impor-
tant sources of groundwater pollution. In addition, 
pollutants may be released as waste products into 
waterways or the atmosphere, which can accumu-
late over time in the aquifer due to infiltration and 
increase the risks associated with groundwater con-
tamination. Controlling and mitigating groundwater 
pollution, as well as establishing regular monitoring 
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programs that help us understand temporal and spa-
tial changes in groundwater quality and diagnose 
current groundwater quality, are therefore essential. 
Traditional water quality laws, on the other hand, in-
clude quality classes based on brittle groupings, and 
class boundaries are fundamentally wrong. In other 
words, the concentration of the parameter is deter-
mined equally by its proximity to or distance from 
the boundary. Each quality measure can be classi-
fi ed into one of several categories (Shwetank et al, 
2020). To put it another way, a class cannot have all 
parameters. Furthermore, diff erent quality classes at 
the same sampling site might lead to confusion (am-
biguity) when determining the quality of a sampling 
site. As a result, the use of multivariate statistical 
approaches such as cluster analysis (CA), principal 
component analysis (PCA) (Jayaraman et al, 2003), 
and fuzzy logic aids in the interpretation of compli-
cated data matrices in order to better comprehend 
groundwater quality. The systems investigated also 
identify sources and factors impacting groundwater 
and provide a vital tool for dependable water re-
source management as well as speedy remedies to 
pollution problems. In this work, statistical analytic 
methods (CA, PCA, and fuzzy logic approach) were 
used to analyze the water quality in the study area. 

Principal component analysis was utilized to iden-
tify probable factors/sources aff ecting water quality, 
and a fuzzy logic technique was employed to evalu-
ate/classify groundwater from fi ve wells based on 
the Moroccan standard. 

MATERIAL AND METHOD

Study zone

The Khemisset-Tifl et region is part of the Sebou 
watershed, one of Morocco’s most important water-
sheds. The Khemisset-Tifl et area is around 40 square 
kilometers and is located northwest of Morocco be-
tween the parallels 33° and 35° north latitude and 4° 
15′ and 6° 35′ west longitude. It is bounded to the 
north by the Rif mountain range, to the south by the 
Middle Atlas mountains, to the east by the Fez-Taza 
corridor, and to the west by the Atlantic Ocean. The 
research area includes various municipalities locat-
ed within the province of Khemisset (Figure 1). This 
location is situated in a hydrogeological context 
widely renowned for its substantial water resource 
potential. Indeed, the Maâmora and Rharb aquifers 
form its western limit, and the Fez-Meknes aquifer 
constitutes its eastern limit.

Figure 1. Monitoring stations in the Khemisset-Tifl et region
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Methods of sampling and analysis

During the 2018–2019 year, surface water 
samples were collected seasonally (fall, winter and 
spring). Samples were collected (Repeated twice) 
between 7 a.m. and 2 p.m and stored in polyethyl-
ene bottles. They were then placed in a freezer and 
transported to the laboratory the same day, where 
they were kept at 4°C until processing and analysis. 
The selection of these stations was based on envi-
ronmental heterogeneity, in particular the location 
of potentially polluting resources. In addition, five 
wells in the study area were selected for this moni-
toring. Four physico-chemical parameters (tem-
perature, dissolved oxygen, conductivity and pH) 
are measured in situ after the removal of the sample 
using an appropriate portable multiparameter instru-
ment of the HACH type, model HQ40d. A complete 
analysis of the chemical elements was carried out 
for this study: the BOD5 was determined on the 
same day of the sampling by the so-called “Respira-
tory” method to avoid time-induced changes in the 
bacterial concentration. The chemical oxygen de-
mand (COD) is determined by oxidation in an acid 
medium with an excess of potassium dichromate. 
The TKN was measured after mineralization of the 
water with selenium. Nitrites were measured by a 
method based on the reaction of NO2

- with amino-
4-benzensulfonamide and N-(naphthyl-1)-ethylene-
dia-mine dihydrochloride. Nitrates were measured 
by a photometric method with 2,6dimethylphe-
nol. Ammonium was measured by a photometric 
method. The concentration of SO4

2- was determined 
spectrophotometrically by the barium sulphate tur-
bidity method and chloride by titration of silver ni-
trate (AgNO3) using potassium chromate solution 
(K2CrO4) as an indicator. PT-P and PO4-P were mea-
sured by the phosphomolybdic complex photomet-
ric method. The determination of the suspended sol-
ids content (SS) was carried out by filtration at 0.45 
μm. All water quality analyzes are carried out within 
the national laboratory for water studies and moni-
toring and by standard methods for water analysis.

Cluster analysis 

Cluster analysis (CA) is a collection of mul-
tivariate methodologies with the primary goal of 
grouping things based on their shared characteris-
tics. Cluster analysis arranges items so that they are 
comparable to others in the cluster based on a prede-
termined criterion. The most often used technique, 
hierarchical agglomerative clustering (HAC), 

creates intuitive similarity correlations between 
each individual sample and the data set and is fre-
quently displayed as a dendrogram (Araoye, 2009., 
May, 2009). The dendrogram visualizes clustering 
procedures by depicting groupings and their prox-
imity. To compute the distances between clusters, 
the analysis of variance technique is utilized.

Principal component analysis

Principal component analysis (PCA) is a pat-
tern recognition method that turns a big collection 
of intercorrelated variables into a smaller set of 
independent variables in order to evaluate vari-
ance (Lu et al, 2019). It gives information on the 
most essential factors used to describe the entire 
data set, data reduction, and a summary of the 
statistical correlation between water components 
with the least loss of original data (Jayaraman et 
al, 2003). PCA was used to generate a correlation 
matrix of the rearranged data in order to explain 
the structure of the underlying data set and uncov-
er latent and unobservable sources of pollution.

The fuzzy logic approach

Zadeh invented fuzzy logic in 1965 (Shwetank 
et al, 2020), which is a new technique of describ-
ing imprecision in ordinary life. This assessment 
method uses fuzzy mathematics to transform ques-
tionable boundary factors into certain ones. In 
fuzzy logic, processes include fuzzification, apply-
ing the rule base to fuzzy inputs, inferring fuzzy 
results, and defuzzification. The main idea behind 
the fuzzy logic assessment approach for assessing 
water quality consists of four operations: 
	• Fuzzification is a procedure that converts real 

observed data into fuzzy data using member-
ship functions defined for the problem features 
(Shwetank et al, 2020). The degree of mem-
bership of each evaluation parameter to the 
evaluation criteria at each level can be quanti-
fied using the membership function equations;

	• The application of the rule base to fuzzy data;
	• Inference of fuzzy results;
	• Defuzzification.

The Table 1 represents the classification of wa-
ter quality into five categories according to the Mo-
roccan standard. These categories are class I-excel-
lent, class II-good, class III-moderate, class IV-poor, 
and class V-very poor. In addition, to normalize the 
natural measurement scales of the quality parameter 
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into a measure of the degree of quality (degree of 
membership) a membership function was used. 

In this work, we used fi ve membership func-
tions of the triangular (Figure 2) and trapezoidal 
(Figure 3) shape because of these simple struc-
tures. The mathematical representation of the 
triangular and trapezium membership function 
for water quality parameters takes into account 
classes I, II, III, IV and V is as follows:
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where: µA (X) is the membership function, x 
the observed value; a, b, c and d are 
the limits of the membership functions 
(Table 2).

Furthermore, a set of rules are applied based 
on the previously realized categories, and the “or” 
operations are used to obtain maximum values 
(Shwetank et al, 2020):
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QPi (I = 1, 2, 3, 4, 5) represents the quality pa-
rameter, I, II, III, IV and V are the quality classes 
and N is the number of quality parameters.

Table 1. Surface water quality classifi cation based on Moroccan standards

Category Unity
Class I Class II Class III Class IV Class V

Excellente Bonne Moyenne Mauvaise T. Mauvaise

Temperature °C 0–20 20–25 25 –30 30 –35 + de 30

pH – 6.5–8.5 6.5–8.5 6.5–9.2 <6.5 ou +9.2 <6.5 ou +9.2

Conductivity Us/cm <300 400–1300 1300–2700 2700–3000 + de 3000

Dissolved oxygen mg/l >7 7–5 5–3 3–1 <1

Sulfate (SO4
2–) mg/l <100 100–200 200–250 250–400 + de 400

Chloride (Cl–) mg/l < 200 200–300 300–750 750–1000 + de 1000

Turbidity NTU < 15 15–35 35–70 70–100 >100

BOD5 mg/l <3 3–5 5–10 10–25 + de 25

COD mg/l <30 30–35 35–40 40–80 + de 80

NO3–N mg/l <5 5–25 25–50 50–100 >100

NO2–N mg/l <0.1 0.1–0.5 0.5–2 2–8 >8

NH4–N mg/l ≤0.1 0.1–0.5 0.5–2 2–8 >8

TKN mg/l <1 1–2 2–3 + de 3

Figure 2. Graphical representation of Equation 1 Figure 3. Graphical representation of Equation 2
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RESULTS AND DISCUSSION

Cluster analysis

Cluster analysis (CA) was applied to detect 
similar clusters in the sampling sites of three 

seasons (autumn, winter and spring) (Figure 4). 
Therefore, a dendrogram was generated group-
ing the sampling sites into three clusters, and the 
difference between the clusters was significant. 
However, group 1 includes stations S3w, S3a, 
S2a, S2sp and S2w (two sampling stations S2 and 

Table 2. Limits of membership functions
Parameters Unity Interval Excellent (E) Good (B) Medium (M) Poot (MV) V.poor (TM)

Temperature °C 0–40
a 
b
c

–5
10
15

10
20
25

20
25
30

25
30
35

30
35
40

pH _ 0–10

a 
b 
c
d

0
2.5
5

8.5

2.5
5.5
8.5

5.5
8.5

8.75

8.5
8.75
9.5

8.75
9.5
10

Conductivité 200–3500

a
b
c

0
300
500

300
800

1300

800
1225
2125
2700

1300
2700
3000

2700
3000
3500

Sulfate mg/l 10–2000

a 
b 
c

0
10

100

10
100
200

100
200
250

200
250
400

250
400

1500
2000

Turbidity NTU 0–280

a 
b 
c
d

0
0

15

5
15
35

15
35
70

35
70
110

70
110
280
280

Dissolved 
oxygen mg/l 0.5–8

a
b
c

8
7.5
6

7.5
6
5

6
5
3

5
3
1

3
1

0.5

NO3–N mg/l 0–110

a
b
c
d

0
2
4

2
10
15
25

10
20
25
50

20
35
50

100

35
80
110
110

NO2–N mg/l 0–8.5

a
b
c

0
0.01
0.1

0.01
0.1
0.5

0.1
0.5
2

0.5
2
5
8

2
6.5
8.5
8.5

NH4–N mg/l –0.25–8.5
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S3), group 2 includes stations S5a, S5sp, S5w, 
S1sp and S3sp (most stations in spring), group 3 
includes stations S4a, S4sp, S4w, S1a and S1w 
(two sampling stations S1 and S4).

Principal component analysis

Before applying PCA, a correlation analysis 
(Table 3) was performed to identify the sourc-
es of pollutants. The correlation matrix of 13 
parameters shows links between the diff erent 

physico-chemical parameters. Indeed, pH values 
correlate negatively with conductivity (-0.539), 
ammonium (-0.489) and chloride (-0.509) con-
centrations. In fact, pH is a parameter aff ected by 
atmospheric deposition of acidifying materials, as 
well as the discharge of certain effl  uents. A positive 
correlation is observed between the concentration 
of conductivity and chloride (0.450). These two 
parameters evolve in parallel. There is also a neg-
ative correlation between dissolved oxygen and 
sulfate levels (-0.422). Turbidity concentrations 

Table 3. Correlation matrix

Parameter pH T Conductivty Dissolved 
oxygen Turbidité NO3–N NO2–N NH4–N TKN Cl BOD5 COD Sulfate

pH 1 .000

T .145 1.000

Conductivity –.539 .145 1.000

Dissolved 
oxygen .313 .123 .215 1.000

Turbidity –.294 –.373 –.060 –.019 1.000

NO3–N –.371 –.236 .203 –.123 .561 1.000

NO2–N .238 .227 –.115 .101 .204 –.020 1.000

NH4–N –.489 –.001 .168 –.275 –.108 –.040 –.087 1.000

TKN –.143 .042 .001 –.370 .317 .367 .002 –.273 1.000

Cl –.509 .310 .450 –.205 .306 .662 .201 .143 .219 1.000

BOD5 –.087 –.397 .168 .350 .551 .345 –.234 –.052 –.190 .043 1.000

COD .053 –.345 .031 .192 .614 .406 –.097 –.250 .464 –.055 .709 1.000

Sulfate –.205 .078 .165 –.422 .104 .619 .026 .104 .062 .779 .138 –.030 1.000

Figure 4. Dendrogram based on Ward’s method for three seasonal surveys in Tifl et river
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correlate positively with NO3 (0.561), BOD5
(0.551) and COD (0.614). NO3 values correlate 
positively with COD (0.406) and sulfate (0.619) 
while NTK values correlate positively with COD 
(0.464). Chloride levels correlated positively 
with sulfate (0.779) and BOD5 values correlated 
positively with COD (0.709).

 Furthermore, because of the complexities of 
the linkages, it was diffi  cult to make more obvi-
ous conclusions. However, principal component 
analysis may extract latent information and de-
scribe the data structure in depth. In fact, a Kai-
ser-Meyer-Olkin (KMO) measure was utilized to 
assess the data quality for principal component 
analysis. The KMO index in this study is 0.7, in-
dicating that the PCA could allow for a reduction 
in the dimensionality of the data set. 

Three components (Table 4) of the multivari-
ate analysis showed 60.42% of the variance of the 
data set. Five variables are involved in the consti-
tution of component 1, which represents 26.736% 
of the total variance of all the data, namely pH, 
turbidity, NO3

-, Cl- and sulfate (Figure 5). In ad-
dition, this axis corresponds to a concentration 
gradient of the evaluated elements, increasing 
from the negative to the positive side of the men-
tioned axis, for NO3

-, Cl-, SO4
2-and turbidity and 

decreasing for pH. Therefore, the stations (S4a, 
S4sp, S4w, S1a and S1w) located in the right part 
of this axis have high concentrations of NO3

-, 
Cl-, SO4

2- and turbidity and low concentrations of 

Table 4. Eigenvalues on the correlation matrices of the 
concentration of physico-chemical parameters in %

Parameter
Composante

1 2 3

NO3–N .877 .013 .147

Cl .726 –.549 .159

Turbidity .700 .448 .146

Sulfate .618 –.450 .170

pH –.593 .407 .447

COD .517 .742 .075

BOD 5 .499 .621 –.416

NH4–N .086 –.482 –.539

NO2–N –.061 –.089 .527

Conductivity .372 –.298 –.461

O– dissous –.233 .466 –.260

T –.254 –.509 .294

TKN .414 .064 .593

Eigen values 3.476 2.617 1.762

Total variance % 26.736 20.127 13.554

Cumulative 
variance % 26.736 46.863 60.417

pH, while the stations (S5a, S5sp, S5w, S1sp and 
S3sp) located in the left part of this axis have high 
concentrations of pH and low concentrations of 
NO3

-, Cl-, SO4
2- and turbidity. The strong positive 

load of NO3_N and SO4
2- indicates nutrient pol-

lution, the origins of which are probably related 
to the fertilizers used in the region (Zhang, D et 

Figure 5. Graphic representation of the factor loads of the principal components
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al, 2016). The strong chloride and sulfate load is 
explained by high mineralization of the ground-
water (Benhamiche et al, 2014). The high con-
centration of mineral salts in water may be due 
to leaching of sedimentary rocks; dissolution of 
rocks may result in high concentrations of chlo-
rides in water (Combe M. 1975). In addition, the 
contamination of water can also be of anthropo-
genic origin; the use of chemical fertilizers and 
manures in agriculture will increase the level 
of mineral salts in drainage water from agricul-
tural land. the positive strong turbidity load may 
be due to the presence of undissolved matter in 
the water, the high turbidity levels is also due to 
natural geological factors (Santanu Mallikune et 
al, 2021). In our study, the second hypothesis is 
highly probable since the high concentration is 
always accompanied by a high concentration of 
suspended matter (Tomas et al, 2017). In addi-
tion, four physico-chemical parameters intervene 
in the constitution of component 2, which repre-
sents 20.127% of the total variance of the data set, 
namely T, DO, BOD5 and COD. In addition, this 
axis corresponds to a gradient of concentration of 
the elements evaluated, increasing from the nega-
tive to the positive side of the axis concerned, for 
the elements DO, COD and BOD5 and decreasing 
for T. Moreover, the stations (S3w, S3a, S2a, S2sp 
and S2w) located on the negative side of this axis 
have high values of temperature and low values 
of DO, COD and BOD5. In addition, the high load 
of BOD5 and COD is explained by the organic 

load due to the location of the wells in relation to 
the source likely to be the origin of the organic 
matter and microorganisms responsible for its 
degradation; the infiltration of wastewater brings 
an additional organic load to the water table (Ou-
fline, R et al, 2012). Thus, the high DO load may 
be due to photosynthetic activity. The negative T 
loading is attributed to seasonal change (Derradji, 
F et al, 2007). The third component accounted for 
13.554% of the total variance in the data set and 
included conductivity, NO2-N, NH4-N and TKN. 
The high positive loading of NO2-N and TKN is 
attributed to anthropogenic pollution from seep-
age wastewater discharge. 

The analysis results show that the principal 
component, C1 and C2, provided an overview of 
the temporal and spatial variations of the water 
quality parameters and accounted for 46.863% 
of the variance.

The fuzzy logic approach

The groundwater quality of five wells, used 
for human consumption, was assessed by the 
fuzzy logic approach. The results of the classifi-
cation of the different wells during three seasons 
are summarized in Table 5.

The fuzzy logic results show differences be-
tween the three seasons. Indeed, the scores of 
different stations during the autumn season vary 
from 56.8 to 65.8. Moreover, during this period 
the groundwater belongs to the class good in the 

Table 5. Classification of different wells for three seasons

Season Stations Score
Water quality class

Class
I II III IV V

Autumn

S1 56.8 + Good

S2 65.8 + Good

S3 61.4 + Good

S4 57.3 + Good

S5 60 + Good

Winter

S1 55 + Good

S2 73.4 + Excellent

S3 75.9 + Excellent

S4 64.9 + Good

S5 75.7 + Excellent

Spring

S1 76.3 + Excellent

S2 66 + Good

S3 75.4 + Excellent

S4 64.4 + Good

S5 75.5 + Excellent
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Moroccan standard of groundwater classifi cation. 
The degrees of belonging of the sampling stations 
are close to 0; these stations are characterized by 
high contents of NO3

-, Cl-, SO4
2- and turbidity. Wa-

ter quality at S1 and S4 was the worst compared to 
the other monitoring sites. In general, groundwater 
quality in winter and spring was the best compared 
to the fall season; these waters belong to the excel-
lent class during these periods, and some stations 
could reach class II (good). In fact, stations S2w, 
S3w and S5w, belonging to the excellent class, are 
characterized by low concentration of DO, COD 
and BOD5. On the other hand, stations S1sp, S3sp 
and S5sp are characterized by low concentrations 
of NO3

-, Cl-, SO4
2- and turbidity; the scores of these 

stations are higher than 70 and their degrees of be-
longing are close to 1. consequently, seasonality 
has an infl uence on the quality of groundwater; the 
values of physico-chemical parameters depend not 
only on the anthropic activities but also on the sam-
pling time. Besides, NO3

-, Cl-, SO4
2- and turbidity 

can play an important role in determining ground-
water quality and can also be a determining fac-
tor for water quality deterioration. Furthermore, in 
fuzzy logic each sampling site has a degree of clus-
ter membership. Thus, points on the cluster center 
have a higher degree of membership than points on 
the cluster edge. In addition, it can provide major 
determinants of water quality deterioration.

Classifi cation according to projection 
planes 1 and 2

The CA and PCA analysis allowed to defi ne 
a typology determined by the presence of three 
groups (clusters) of stations GI, GII and GIII 
(Figure 6).

The fuzzy logic approach was applied to deter-
mine the factors responsible in the deterioration of 
water quality. Group I include stations S3w, S3a, 
S2a, S2sp and S2w which are characterized by high 
temperature and low DO, COD and BOD5 values. 
The fuzzy logic shows scores above 60; the waters 
of stations S3w and S2w belong to the excellent class 
and the waters of stations S3a, S2a and S2sp belong 
to the class good. Group II includes stations S5a, 
S5sp, S5w, S1sp and S3sp, characterized by high 
values pH and low concentrations of NO3

-, Cl-, SO4
2-

and turbidity. The scores of the mentioned stations, 
according to the fuzzy logic, show waters belonging 
to the excellent class for all the stations S5sp, S5w, 
S1sp and S3sp of this group except the water of the 
station S5a which belongs to the class good. Group 
III includes stations S4a, S4sp, S4w, S1a and S1w, 
which are characterized by high concentrations of 
NO3

-, Cl-, SO4
2- and turbidity and low concentrations 

of pH; the scores of all the stations of this group ac-
cording to the fuzzy logic belong to the class good 
with the degrees of membership diff erent. Therefore, 

Figure 6. The scores of the fi ve sampling sites monitored seasonally for the 
two axes PC1 and PC2. Au: Autumn; Wi: Winter; Sp: Spring
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the water quality in spring and winter was the best; 
the parameters responsible for the deterioration of 
the water quality are NO3

-, Cl-, SO4
2- and turbidity. 

Moreover, the enrichment of water in mineral salts 
is related to the leaching of rocks and plantations by 
rainwater, as well as the contributions of domestic 
wastewater and runoff.

CONCLUSIONS

CA, PCA, and the fuzzy logic technique were 
used in this work to identify groundwater quality 
in the Khemisset-Tiflet area. Indeed, the CA results 
can be used to determine the similarities between 
sampling sites, with each cluster containing similar 
sampling sites. Principal component analysis (ACP), 
on the other hand, provides for the interpretation of 
traits by grouping the sampling sites and can also 
define their properties. Furthermore, the presence of 
three groups enabled us to create a typology using 
principal component analysis (GI, GII and GIII). The 
first group of stations is distinguished by high tem-
perature values and low DO, COD, and BOD5 levels. 
The second category contains stations with high pH 
values and low NO3

-, Cl-, SO4
2-, and turbidity concen-

trations. The third group includes stations with high 
NO3

-, Cl-, SO4
2-, and turbidity concentrations but low 

pH values. Furthermore, the fuzzy logic approach 
provided information about the status of groundwa-
ter quality and enables for the identification of the 
causes responsible for water quality decline. The re-
sults showed the presence of two water classes, the 
excellent class (class I) and the class good (class II). 
In fact, all the results show that NO3

-, Cl-, SO4
2- and 

turbidity are the main parameters responsible for the 
deterioration of water quality in the majority of the 
stations receiving or neighboring the discharges of 
anthropic origin and natural. Thus, the results of this 
study can help policy makers and other stakeholders 
to find the necessary actions to take.
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