PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental impact of water exchange blocking in a strait – a multidisciplinary study in the Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, we report the environmental impact of water exchange blocking by a 3 km road dam built in 1896 in the shallow Väike Strait, north-eastern Baltic Sea. Using a multidisciplinary measurement campaign and numerical simulations, we show ecological conditions in the strait have considerably altered; the previously free-flowing strait now comprises two bays with separate circulation systems. Water exchange in the area close to the dam has decreased 10–12-fold. Since advection is weakened, exchange with the atmosphere and sediments has a relatively greater role in shaping water characteristics. Consequently, occasional very high sea surface temperature, salinity, and total nitrogen, and strong diurnal cycles in water temperature (>4°C) and dissolved oxygen (>4 mg l−1) were observed near the dam in summer. Oxygen levels are continuously below saturation in winter and concentration occasionally drops to hypoxic levels with ice cover. Nitrogen content in sediments near the dam is 3–4 times higher than in neighboring areas. The dam also modifies sea level, wind wave and suspended matter patterns in the strait. Sediments near the dam show elevated content of hazardous substances likely associated with traffic on the dam road. The phytobenthos community near the dam is dominated by annual green algae, which massively decompose during winter. The dam likely impedes fish migration between suitable feeding and spawning areas, also there have been fish kills caused by rapid fluctuations in sea levels, amplified by dam. The construction of new openings would alleviate negative impacts of the dam.
Czasopismo
Rocznik
Strony
9--25
Opis fizyczny
Bibliogr. 71 poz., fot., map., rys., tab., wykr.
Twórcy
autor
  • Tallinn University of Technology, Tallinn, Estonia
  • Tallinn University of Technology, Tallinn, Estonia
autor
  • Tallinn University of Technology, Tallinn, Estonia
  • Tallinn University of Technology, Tallinn, Estonia
autor
  • Tallinn University of Technology, Tallinn, Estonia
autor
  • Tallinn University of Technology, Tallinn, Estonia
autor
  • Tallinn University of Technology, Tallinn, Estonia
  • Tallinn University of Technology, Tallinn, Estonia
  • University of Tartu, Estonian Marine Institute, Tartu, Estonia
autor
  • University of Tartu, Estonian Marine Institute, Tartu, Estonia
autor
  • University of Tartu, Estonian Marine Institute, Tartu, Estonia
autor
  • University of Tartu, Estonian Marine Institute, Tartu, Estonia
Bibliografia
  • 1. Adamiec, E., Jarosz-Krzemi´nska, E., Wieszała, R., 2016. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 188, 1-11. https://doi.org/10.1007/S10661-016-5377-1/FIGURES/7
  • 2. Altunkaynak, A., Eruçar, S., 2020. Physical experimental investigation of the horizontal water flow patterns in the Golden Horn under different scenarios with the presence of various structures. Ocean Eng. 215, 107837. https://doi.org/10.1016/J.OCEANENG.2020.107837
  • 3. Astok, V., Otsmann, M., Suursaar, Ü., 1999. Water exchange as the main physical process in semi-enclosed marine systems: the Gulf of Riga case. Hydrobiologia 393.
  • 4. Bas-Silvestre, M., Quintana, X.D., Compte, J., Gascón, S., Boix, D., Antón-Pardo, M., Obrador, B., 2020. Ecosystem metabolism dynamics and environmental drivers in Mediterranean confined coastal lagoons. Estuar. Coast. Shelf Sci. 245, 106989. https://doi.org/10.1016/J.ECSS.2020.106989
  • 5. Beck, N.G., Fisher, A.T., Bruland, K.W., 2001. Modeling water, heat, and oxygen budgets in a tidally dominated estuarine pond. Mar. Ecol. Prog. Ser. 217, 43-58. https://doi.org/10.3354/MEPS217043
  • 6. Boutov, D., Peliz, Á., Miranda, P.M.A., Soares, P.M.M., Cardoso, R.M., Prieto, L., Ruiz, J., García-Lafuente, J., 2014. Interannual variability and long term predictability of exchanges through the Strait of Gibraltar. Glob. Planet. Change 114, 23-37. https://doi.org/10.1016/J.GLOPLACHA.2013.12.009
  • 7. Breitburg, D.L., 1994. Behavioral response of fish larvae to low dissolved oxygen concentrations in a stratified water column. Mar. Biol. 120, 615-625. https://doi.org/10.1007/BF00350083
  • 8. Burchard, H., Bolding, K., 2002. GETM — a general estuarine transport model. Scientific Documentation. Technical report EUR 20253 en. Tech. Rep. European Commission, Ispra, Italy.
  • 9. Canuto, V.M., Howard, A., Cheng, Y., Dubovikov, M.S., 2001. Ocean turbulence. Part I: One-point closure model-momentum and heat vertical diffusivities. J. Phys. Oceanogr. 31, 1413-1426. https://doi.org/10.1175/1520-0485(2001)031〈1413:OTPIOP〉2.0.CO;2
  • 10. Cape, J.N., Tang, Y.S., Van Dijk, N., Love, L., Sutton, M.A., Palmer, S.C.F., 2004. Concentrations of ammonia and nitrogen dioxide at roadside verges, and their contribution to nitrogen deposition. Environ. Pollut. 132, 469-478. https://doi.org/10.1016/J.ENVPOL.2004.05.009
  • 11. Carstensen, J., Andersen, J.H., Gustafsson, B.G., Conley, D.J., 2014. Deoxygenation of the Baltic Sea during the last century. Proc. Natl. Acad. Sci. U. S. A. 111, 5628-5633. https://doi.org/10.1073/pnas.1323156111
  • 12. Clarke, K.R., Gorley, R.N., 2015. PRIMER v7: User Manual/Tutorial. Primer-E, Plymouth. D’Avanzo, C., Kremer, J., Wainright, S., 1996. Ecosystem production and respiration in response to eutrophication in shallow temperate estuaries. Mar. Ecol. Prog. Ser. 141, 263-274. https://doi.org/10.3354/MEPS141263
  • 13. Dietze, H., Löptien, U., 2021. Retracing hypoxia in Eckernförde Bight (Baltic Sea). Biogeosciences 18, 4243-4264. https://doi.org/10.5194/BG-18-4243-2021
  • 14. Ding, H., Elmore, A.J., 2015. Spatio-temporal patterns in water surface temperature from Landsat time series data in the Chesapeake Bay. U.S.A. Remote Sens. Environ. 168, 335-348. https://doi.org/10.1016/J.RSE.2015.07.009
  • 15. Friedland, R., Boschetti, S., Stips, A., n.d., European Commission. Joint Research Centre., Marine Strategy Framework Directive — Review and analysis of EU Member States’ 2018 reports — Descriptor 7 — permanent alteration of hydrographical conditions does not adversely affect marine ecosystems. https://doi.org/10.2760/74271
  • 16. Gallo, N.D., Beckwith, M., Wei, C.L., Levin, L.A., Kuhnz, L., Barry, J.P., 2020. Dissolved oxygen and temperature best predict deep-sea fish community structure in the Gulf of California with climate change implications. Mar. Ecol. Prog. Ser. 637, 159-180. https://doi.org/10.3354/MEPS13240
  • 17. Grasshoff, K., Kremling, K., Ehrhardt, M., 1999. Methods of Seawater Analysis: Third, Completely Revised and Extended Edition. Methods Seawater Anal. Third, Complet. Revis. Ext. Ed. 1-600 https://doi.org/10.1002/9783527613984
  • 18. Gräwe, U., Holtermann, P., Klingbeil, K., Burchard, H., 2015. Advantages of vertically adaptive coordinates in numerical models of stratified shelf seas. Ocean Model. 92, 56-68. https://doi.org/10.1016/j.ocemod.2015.05.008
  • 19. Gröger, M., Placke, M., Meier, M., Börgel, F., Brunnabend, S.-E., Dutheil, C., Gräwe, U., Hieronymus, M., Neumann, T., Radtke, H., Schimanke, S., Su, J., Väli, G., 2022. GMDD —The Baltic Sea model inter-comparison project BMIP — a platform for model development, evaluation, and uncertainty assessment. Geosci. Model Dev. Discuss. https://doi.org/10.5194/gmd- 2022- 160
  • 20. Hansen, B.W., Stenalt, E., Petersen, J.K., Ellegaard, C., 2002. Invertebrate re-colonisation in Mariager Fjord (Denmark) after severe hypoxia. I. Zooplankton and settlement. Ophelia 56, 197-213. https://doi.org/10.1080/00785236.2002.10409499
  • 21. HELCOM, 2019. Guidelines for coastal fish monitoring. https://helcom.fi/wp-content/uploads/2020/01/HELCOM-Guidelines-for-coastal-fish-monitoring-2019.pdf
  • 22. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G.De, Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.de, Rozum, I., Vamborg, F., Villaume, S., Thépaut, J.-N., 2020. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999-2049. https://doi.org/10.1002/QJ.3803
  • 23. Hofmeister, R., Burchard, H., Beckers, J.-M., 2010. Non-uniform adaptive vertical grids for 3D numerical ocean models. Ocean Model. 33, 70-86. https://doi.org/10.1016/j.ocemod.2009.12.003
  • 24. Hsieh, H.H., Chuang, M.H., Shih, Y.Y., Weerakkody, W.S., Huang, W.J., Hung, C.C., Muller, F.L.L., Ranatunga, R.R.M.K.P., Wijethunga, D.S., 2021. Eutrophication and Hypoxia in Tropical Negombo Lagoon, Sri Lanka. Front. Mar. Sci. 8, 1216. https://doi.org/10.3389/FMARS.2021.678832/BIBTEX
  • 25. Jakobsen, F., 1995. The major inflow to the Baltic Sea during January 1993. J. Marine Syst. 6, 227-240. https://doi.org/10.1016/0924-7963(94)00025-7
  • 26. Jakobsen, F., Hansen, I.S., Ottesen Hansen, N.E., Østrup Rasmussen, F., 2010. Flow resistance in the Great Belt, the biggest strait between the North Sea and the Baltic Sea. Estuar. Coast. Shelf Sci. 87, 325-332. https://doi.org/10.1016/j.ecss.2010.01.014
  • 27. Janssen, F., Schrum, C., Backhaus, J.O., 1999. A climatological data set of temperature and salinity for the Baltic Sea and the North Sea. Dtsch. Hydrogr. Zeitschrift 51, 5-245. https://doi.org/10.1007/BF02933676
  • 28. Jensen, B., Carstensen, S., Christensen, E.D., 2018. Mixing of Stratified Flow around Bridge Piers in Steady Current. J. Hydraul. Eng. 144, 04018041. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001481
  • 29. Kanarik, H., Tuomi, L., Alenius, P., Lensu, M., Miettunen, E., Hietala, R., 2018. Evaluating Strong Currents at a Fairway in the Finnish Archipelago Sea. J. Mar. Sci. Eng. 6 (4), 122. https://doi.org/10.3390/JMSE6040122
  • 30. Karlson, B., Andersson, L.S., Kaitala, S., Kronsell, J., Mohlin, M., Seppälä, J., Willstrand Wranne, A., 2016. A comparison of Ferry Box data vs. monitoring data from research vessels for near surface waters of the Baltic Sea and the Kattegat. J. Marine Syst. 162, 98-111. https://doi.org/10.1016/J.JMARSYS.2016.05.002
  • 31. Karlsson, O.M., Jonsson, P.O., Lindgren, D., Malmaeus, J.M., Stehn, A., 2010. Indications of Recovery from Hypoxia in the Inner Stockholm Archipelago. Ambio 39, 486. https://doi.org/10.1007/S13280-010-0079-3
  • 32. Kasai, A., Fujiwara, T., Simpson, J.H., Kakehi, S., 2002. Circulation and cold dome in a gulf-type ROFI. Cont. Shelf Res. 22, 1579-1590. https://doi.org/10.1016/S0278-4343(02)00022-5
  • 33. Klingbeil, K., Lemarié, F., Debreu, L., Burchard, H., 2018. The numerics of hydrostatic structured-grid coastal ocean models: State of the art and future perspectives. Ocean Model. 125, 80-105. https://doi.org/10.1016/J.OCEMOD.2018.01.007
  • 34. Knight, J.M., Griffin, L., Dale, P.E.R., Sheaves, M., 2013. Shortterm dissolved oxygen patterns in sub-tropical mangroves. Estuar. Coast. Shelf Sci. 131, 290-296. https://doi.org/10.1016/J.ECSS.2013.06.024
  • 35. Kuprijanov, I., Väli, G., Sharov, A., Berezina, N., Liblik, T., Lips, U., Kolesova, N., Maanio, J., Junttila, V., Lips, I., 2021. Hazardous substances in the sediments and their pathways from potential sources in the eastern Gulf of Finland. Mar. Pollut. Bull. 170, 112642. https://doi.org/10.1016/J.MARPOLBUL.2021.112642
  • 36. Lass, H.U., Mohrholz, V., Knoll, M., Prandke, H., 2008. Enhanced mixing downstream of a pile in an estuarine flow. J. Marine Syst. 74, 505-527. https://doi.org/10.1016/j.jmarsys.2008.04.003
  • 37. Liblik, T., Naumann, M., Alenius, P., Hansson, M., Lips, U., Nausch, G., Tuomi, L., Wesslander, K., Laanemets, J., Viktorsson, L., 2018. Propagation of Impact of the Recent Major Baltic Inflows From the Eastern Gotland Basin to the Gulf of Finland. Front. Mar. Sci. 5, 222. https://doi.org/10.3389/fmars.2018.00222
  • 38. Liblik, T., Skudra, M., Lips, U., 2017. On the buoyant sub-surface salinity maxima in the Gulf of Riga. Oceanologia 59 (2), 113-128. https://doi.org/10.1016/J.OCEANO.2016.10.001
  • 39. Liblik, T., Väli, G., Lips, I., Lilover, M.-J., Kikas, V., Laanemets, J., 2020. The winter stratification phenomenon and its consequences in the Gulf of Finland. Baltic Sea. Ocean Sci. 16, 1475-1490.
  • 40. Lilover, M.-J., Lips, U., Laanearu, J., Liljebladh, B., 1998. Flow regime in the Irbe Strait. Aquat. Sci. 60, 253. https://doi.org/10.1007/s000270050040
  • 41. Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., Arheimer, B., 2010. Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrol. Res. 41, 295-319. https://doi.org/10.2166/NH.2010.007
  • 42. Matishov, G.G., Grigorenko, K.S., 2020. Dynamic Mode of the Azov Sea in Conditions of Salinization. Dokl. Earth Sci. 492, 376-381. https://doi.org/10.1134/S1028334X20050141/FIGURES/4
  • 43. McCormick, L.R., Levin, L.A., Oesch, N.W., 2022. Reduced Oxygen Impairs Photobehavior in Marine Invertebrate Larvae. Biol. Bull. 243 (2). https://doi.org/10.1086/717565
  • 44. Men, C., Liu, R., Wang, Q., Guo, L., Shen, Z., 2018. The impact of seasonal varied human activity on characteristics and sources of heavy metals in metropolitan road dusts. Sci. Total Environ. 637-638, 844-854. https://doi.org/10.1016/J.SCITOTENV.2018.05.059
  • 45. Mohrholz, V., Naumann, M., Nausch, G., Krüger, S., Gräwe, U., 2015. Fresh oxygen for the Baltic Sea - An exceptional saline inflow after a decade of stagnation. J. Marine Syst. 148, 152-166. https://doi.org/10.1016/j.jmarsys.2015.03.005
  • 46. Orio, A., Heimbrand, Y., Limburg, K., 2022. Deoxygenation impacts on Baltic Sea cod: Dramatic declines in ecosystem services of an iconic keystone predator. Ambio 51, 626-637. https://doi.org/10.1007/S13280-021-01572-4/FIGURES/6
  • 47. Otsmann, M., Suursaar, Ü., Kullas, T., 2001. The oscillatory nature of the flows in the system of straits and small semien-closed basins of the Baltic Sea. Cont. Shelf Res. 21, 1577-1603. https://doi.org/10.1016/S0278-4343(01)00002-4
  • 48. Pearson, T., Rosenberg, R., 1978. Macrobenthic Succession in Relation to Organic Enrichment and Pollution of the Marine Environment. Oceanogr. Mar. Biol. Annu. Rev. 16, 229-311.
  • 49. Pettai, E., 1984. Eesti kalanduse minevikust I [Of the history of Estonian fisheries]. Eesti Kalurite Koondis, Stockholm, 1-412.
  • 50. Raudsepp, U., Laanemets, J., Haran, G., Alari, V., Pavelson, J., Kõuts, T., 2011. Flow, waves and water exchange in the Suurstrait, Gulf of Riga, in 2008. Oceanologia 53 (1), 35-56. https://doi.org/10.5697/oc.53-1.035
  • 51. Roman, M.R., Pierson, J.J., Kimmel, D.G., Boicourt, W.C., Zhang, X., 2012. Impacts of Hypoxia on Zooplankton Spatial Distributions in the Northern Gulf of Mexico. Estuar. Coast. 35, 1261-1269. https://doi.org/10.1007/S12237-012-9531-X
  • 52. Savchuk, O.P., 2010. Large-Scale Dynamics of Hypoxia in the Baltic Sea. In: Yakushev, E. (Ed.), Chemical Structure of Pelagic Redox Interfaces. Springer, Berlin, Heidelberg, 137-160. https://doi.org/10.1007/698_2010_53
  • 53. Smagorinsky, J., 1963. General Circulation Experiments with the Primitive Equations. Mon. Weather Rev. 91, 99. https://doi.org/10.1175/1520-0493(1963)091
  • 54. Stanev, E.V., Grashorn, S., Zhang, Y.J., 2017. Cascading ocean basins: numerical simulations of the circulation and interbasin exchange in the Azov-Black-Marmara-Mediterranean Seas system. Ocean Dynam. 67, 1003-1025. https://doi.org/10.1007/S10236-017-1071-2
  • 55. Stoicescu, S.T., Lips, U., Lips, I., 2018. Assessing the eutrophication status of Estonian marine waters. Fundam. Appl. Hydrophys. 11, 62-74. https://doi.org/10.7868/S2073667318020053
  • 56. Suursaar, Ü., Kullas, T., Otsmann, M., 2009. The possible effect of re-opening of the Väike Strait (Baltic Sea): Results of high-resolution modelling. WIT Trans. Ecol. Environ. 125, 381-392. https://doi.org/10.2495/WRM090341
  • 57. Suursaar, Ü., Kullas, T., Otsmann, M., 2001. The influence of currents and waves on ecological conditions of the Väinameri. Proc. Est. Acad. Sci. Biol. Ecol. 50, 231-247.
  • 58. Talpsepp, L., 2005. Coherent current oscillations and water exchange in the straits of the Gulf of Riga. Oceanologia 47 (2), 115-127.
  • 59. Tyler, R.M., Brady, D.C., Targett, T.E., 2009. Temporal and spatial dynamics of diel-cycling hypoxia in estuarine tributaries. Estuar. Coast. 32, 123-145. https://doi.org/10.1007/S12237-008-9108-/FIGURES/15
  • 60. Umlauf, L., Burchard, H., 2005. Second-order turbulence closure models for geophysical boundary layers. A review of recent work. Cont. Shelf Res. 25, 795-827. https://doi.org/10.1016/j.csr.2004.08.004
  • 61. Väli, G., Meier, H.E.M., Placke, M., Dieterich, C., 2019. River runoff forcing for ocean modeling within the Baltic Sea Model Intercomparison Project. Meereswissenschaftliche Berichte 113. https://doi.org/10.12754/msr-2019-0113
  • 62. Valiela, I., McClelland, J., Hauxwell, J., Behr, P.J., Hersh, D., Foreman, K., 1997. Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr. 42, 1105-1118. https://doi.org/10.4319/LO.1997.42.5_PART_2.1105
  • 63. Veneranta, L., Vanhatalo, J., Urho, L., 2016. Detailed temperature mapping—Warming characterizes archipelago zones. Estuar. Coast. Shelf Sci. 182, 123-135. https://doi.org/10.1016/J.ECSS.2016.09.011
  • 64. Verity, P.G., Alber, M., Bricker, S.B., 2006. Development of hypoxia in well-mixed subtropical estuaries in the Southeastern USA. Estuar. Coast. 29, 665-673. https://doi.org/10.1007/BF02784291
  • 65. Verliin, A., Saks, L., Svirgsden, R., Vetemaa, M., Rohtla, M., Taal, I., Saat, T., 2013. Whitefish (Coregonus lavaretus (L.)) landings in the Baltic Sea during the past100 years: combining official datasets and grey literature. Adv. Limnol. 64, 133-152. https://doi.org/10.1127/1612-66X/2013/0064-0020
  • 66. Virtanen, E.A., Norkko, A., Nyström Sandman, A., Viitasalo, M., 2019. Identifying areas prone to coastal hypoxia — The role of topography. Biogeosciences 16, 3183-3195. https://doi.org/10.5194/BG-16-3183-2019
  • 67. Virtasalo, J.J., Kohonen, T., Vuorinen, I., Huttula, T., 2005. Sea bottom anoxia in the Archipelago Sea, northern Baltic Sea—Implications for phosphorus remineralization at the sediment surface. Mar. Geol. 224, 103-122. https://doi.org/10.1016/J.MARGEO.2005.07.010
  • 68. Wesslander, K., Hall, P., Hjalmarsson, S., Lefevre, D., Omstedt, A., Rutgersson, A., Sahlée, E., Tengberg, A., 2011. Observed carbon dioxide and oxygen dynamics in a Baltic Sea coastal region. J. Marine Syst. 86, 1-9. https://doi.org/10.1016/J.JMARSYS.2011.01.001
  • 69. Xu, Y., Xiao, H., Wu, D., 2019. Traffic-related dustfall and NOx, but not NH3, seriously affect nitrogen isotopic compositions in soil and plant tissues near the roadside. Environ. Pollut. 249, 655-665. https://doi.org/10.1016/J.ENVPOL.2019.03.074
  • 70. Yuen, J.Q., Olin, P.H., Lim, H.S., Benner, S.G., Sutherland, R.A., Ziegler, A.D., 2012. Accumulation of potentially toxic elements in road deposited sediments in residential and light industrial neighborhoods of Singapore. J. Environ. Manage. 101, 151-163. https://doi.org/10.1016/J.JENVMAN.2011.11.017
  • 71. Zainal, K., Al-Madany, I., Al-Sayed, H., Khamis, A., Al Shuhaby, S., Al Hisaby, A., Elhoussiny, W., Khalaf, E., 2012. The cumulative impacts of reclamation and dredging on the marine ecology and land-use in the Kingdom of Bahrain. Mar. Pollut. Bull. 64, 1452-1458. https://doi.org/10.1016/J.MARPOLBUL.2012.04.004
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b19dcbd3-59bf-4ef0-a35e-76996f00cb14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.