PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantitative Dynamics of Chosen Bacteria Phylla in Wastewater Treatment Plants Excess Sludge After Ozone Treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Among the waste produced by municipal wastewater treatment plants, the largest technological problem is caused by the excessive sludge, the management of which consumes almost half of the costs of the entire installation. Regardless of the final disposal route, which may be, for example, reclamation of degraded areas, the the sludge derived from a wastewater treatment plant should be firstly subjected to a series of processes aimed at: reducing its volume, improving selected physical properties, recovering energy, rot preventing (stabilization) or eliminating epidemiological threats (hygenizing). These goals could be implemented using commonly known technologies, including: dewatering, liming, thermoconditioning, methanogenesis or composting. One of the alternative solutions is the use of ozonation of raw excess sludge, which, in principle, may lead to the simultaneous resolution of several above-mentioned problems, such as: drainage properties improvement, increase the bioavailability of organic matter for biogas production, as well as the removal of undesirable microorganisms. Confirmation of the hygenizing effects usually requires arduous microbiological methods; therefore, the fast and reliable tools of molecular biology could prove their usefulness in this case. In this study, the possibility of determining the dynamics of selected groups of microorganisms (including changes in total bacteria amount, Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria) after sewage sludge ozonation, by using the semi-quantitative RealTime polymerase chain reaction (qPCR), wasinvestigated.
Rocznik
Strony
204--213
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Chair of Biological Bases of Agriculture and Environmental Education, Department of Biology and Agriculture, University of Rzeszów, Ćwiklińskiej 1a 35-601 Rzeszów, Poland
  • Chair of Biological Bases of Agriculture and Environmental Education, Department of Biology and Agriculture, University of Rzeszów, Ćwiklińskiej 1a 35-601 Rzeszów, Poland
  • Chair of Chemistry and Toxicology of Food, Department of Biology and Agriculture, University of Rzeszów, Ćwiklińskiej 1a 35-601 Rzeszów. Poland
Bibliografia
  • 1. Alexander J., Knopp G., Dötsch A., Wieland A., Schwartz T. 2016. Ozone treatment of conditioned wastewater selects antibiotic resistance genes, opportunistic bacteria, and induce strong population shifts. Science of the Total Environment, 559, 103–112.
  • 2. Bacchetti De Gregoris T., Aldred N., Clare A. S., Grant Burgess G.J. 2011. Improvement of phylum- and class-specific primers for real-time PCR quantification of bacterial taxa. Journal of microbiological methods, 86, 3, 351–356.
  • 3. Blackwood C. B., Oaks A., Buyer J. S. 2005. Phylum- and Class-Specific PCR Primers for General Microbial Community Analysis. Applied and Environmental Microbiology, 71, 10, 6193–6198.
  • 4. Boere A.C., Sinninghe Damsté J.S., Rijpstra W.I.C., Volkman J.K., Coolen M.J. 2011. Sourcespecific variability in post-depositional DNA preservation with potential implications for DNA based paleoecological records. Organic Geochemistry, 42, 1216–1225.
  • 5. Brzuzan P., Ciesielski S., Kusznierz J., Jurczyk Ł. 2004. Identification of whitefish remains by mtDNA analysis. Annales Zoologici Fennici, 41, 1, 61–68.
  • 6. Cataldo F. 2006. DNA degradation with ozone. International Journal of Biological Macromolecules, 38, 248–254.
  • 7. Corinaldesi C., Beolchini F., Dell’Anno A. 2008. Damage and degradation rates of extracellular DNA in marine sediments: implications for the preservation of gene sequences. Molecular Ecology, 17, 3939–3951.
  • 8. DIN 1899–1/EN 1899–2. Determination of Biochemical Oxygen Demand After N Days (BODn). Beuth Verlag, Berlin, Germany 1998.
  • 9. Dodd M.C. 2012. Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes duringwater and wastewater treatment. Journal of Environmental Monitoring, 14, 7, 1754–1771.
  • 10. Dworkin M., Falkow S., Rosenberg E., Schleifer K.H., Stackebrandt E. 2006. The Prokaryotes, Volume 5 – Proteobacteria: Alpha and Beta Subclasses Springer, 15–18.
  • 11. Ferro G., Guarino F., Cicatelli A., Rizzo L. 2017. β-lactams resistance gene quantification in an antibiotic resistant Escherichia coli water suspension treated by advanced oxidation with UV/H2O2. Journal of Hazardous Materials, 323, 426–433
  • 12. Funke J., Prasse C., Lütke-Eversloh C., Ternes T. 2015. Oxypurinol – A novelmarker for wastewater contamination of the aquatic environment. Water Research, 74, 257–265.
  • 13. Gupta R.S., Lorenzini E. 2007. Phylogeny and molecular signatures (conserved proteins and indels) that are specific for the Bacteroidetes and Chlorobi species. BMC Evolutionary Biology. 7, 71, 1–18.
  • 14. Hermanowicz W., Dojlido J., Dożańska W., Koziorowski B., Zerbe J. 1999. Physico-chemical examination of water and wastewater. Arkady.
  • 15. Imhoff K.R, Bode H., Evers P. 2000. The examples of municipal sewage treatment desines. Entwurfsbeispiele für kommunale Kläranlagen. Seidel-Przywecki. Szczecin.
  • 16. ISO 16072:2002 Soil quality: Laboratory methods for determination of microbial soil respiration). Beuth Verlag, Berlin, Germany 1998.
  • 17. Jager T., Alexander J., Kirchen S., Dotsch A., Wieland A., Hiller C., Schwartz T. 2018. Live-dead discrimination analysis, qPCR assessment for opportunistic pathogens, and population analysis at ozone wastewater treatment plants. Environmental Pollution, 232, 571–579.
  • 18. Kulikowska D. 2012. Kompostowanie komunalnych osadów ściekowych jako forma recyclyngu organicznego. PAN. Lublin.
  • 19. Kwarciak-Kozłowska A. 2018. Pretreatment of Stabilized Landfill Leachate Using Ozone. Journal of Ecological Engineering, 19, 5, 186–193.
  • 20. Luddeke F., Heß S., Gallert C., Winter J., Gude H., Loffler H. 2015. Removal of total and antibiotic resistant bacteria in advanced wastewater treatment by ozonation in combination with different filtering techniques. Water Research, 69, 243–251.
  • 21. Nadziakiewicz J., Wacławiak K, Stelcmach S. 2012. Thermal processes of waste utilization. Wydawnictwo Politechniki Śląskiej. Gliwice.
  • 22. Nielsen K.M., Johnsen P.J., Bensasson D., Daffonchio D. 2007. Release and persistence of extracellular DNA in the environment. Environmental Biosafety Research, 6, 37–53.
  • 23. Nielsen P.H., Thomsen T.R., Nielsen J.L. 2004. Bacterial composition of activated sludge – importance for floc and sludge properties. Water Science&Technology, 49, 10, 51–8.
  • 24. PN-ISO 6060, Water quality: Determination of chemical oxygen demand, 2006.
  • 25. Rizzo L., Manaia C., Merlin C., Schwartz T., Dagot C., Ploy M.C., Michael I., Fatta-Kassinos D. 2013. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Science of the Total Environment, 447, 345–360.
  • 26. Servin J.A., Herbold C.W., Skophammer R.G., Lake J.A. 2008. Evidence excluding the root of the tree of life from the actinobacteria. Molecular Biology and Evolution, 25, 1, 1–4.
  • 27. Sousaa J.M., Macedo G., Pedrosa M., BecerraCastro C., Castro-Silva S., Pereira M.F.R., Silva A.M.T., Nunes O.C., Manaia C.M. 2017. Ozonation and UV254nm radiation for the removal of microorganismsand antibiotic resistance genes from urban wastewater. Journal of Hazardous Materials, 323, 434–441.
  • 28. Ternes T.A., Joss A., Öhlmann J. 2015. Occurrence, fate, removal and assessment of emerging contaminants in water in the water cycle (from wastewater to drinking water. Water Research, 72, 1–2.
  • 29. Williams K.P., Gillespie J.J., Sobral B.W.S., Nordberg E.K., Snyder E.E., Shallom J.M., Dickerman A.W. 2010. Phylogeny of Gammaproteobacteria. Journal of Bacteriology, 192, 9, 2305–2314.
  • 30. Wolf M., Müller T., Dandekar T., Pollack J.D. 2004. Phylogeny of Firmicutes with special reference to Mycoplasma (Mollicutes) as inferred from phosphoglycerate kinase amino acid sequence data. International journal of systematic and evolutionary microbiology, 54, 3, 871–875.
  • 31. Yang Y.W., Chen M.K., Yang B.Y., Huang X.J., Zhang X.R., He L.Q., Zhang J., Hua Z.C. 2015. Use of 16S rRNA Gene-Targeted Group-Specific Primers for Real-Time PCR Analysis of Predominant Bacteria in Mouse Feces. Applied and Environmental Microbiology, 81, 19, 6749–6756.
  • 32. Zheng J., Chao S., Zhou J., Xu L., Qian Y., Chen H. 2017. Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants. Chemical Engineering Journal, 317, 309–316.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b19a8de6-4e13-4ac5-bc0f-58cad6335b7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.