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ESTIMATION OF LONGITUDINAL PRECIPITATION OF LIQUID INDICATOR (LPLI) 

WITH THE USE OF THE ARTIFICIAL NEURAL NETWORK (MLP, RBF) MODELS 
 

Summary 
 

The study presents the results of the analysis of two artificial neural networks as models of relationships between longitudi-

nal precipitation of liquid indicator and selected technical and technological factors of spraying process. The measurements 

were conducted in laboratory conditions. A wind tunnel was primary element in experimental set-up. Based on the results, it 

can be stated that MLP model (R2 = 0.908 for validation data set) was more accurate that RBF model (R2 = 0.837 for vali-

dation data set). The analysis of input variables’ contribution indicated that the LPLI is influenced the most by the air flow 

speed and the droplet size. Spray boom height and spray nozzle angle were less influencing parameters. 
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ESTYMACJA WSKAŹNIKA OPADU PODŁUŻNEGO ROZPYLONEJ CIECZY (Wso)  

ZA POMOCĄ SZTUCZNYCH SIECI NEURONOWYCH (MLP I RBF) 
 

Streszczenie 
 

W pracy przedstawiono wyniki analizy dwóch modeli matematycznych zależności między wskaźnikiem opadu podłużnego 

rozpylonej cieczy a wybranymi technicznymi i technologicznymi parametrami procesu opryskiwania. Modele zbudowano 

wykorzystując sztuczne sieci neuronowe. Pomiary przeprowadzono w warunkach laboratoryjnych. Głównym elementem 

stanowiska badawczego był tunel aerodynamiczny. Na podstawie otrzymanych wyników można stwierdzić, że model oparty 

o sieć MLP (R2 = 0.908 dla zbioru walidacyjnego) charakteryzował się wyższą dokładnością niż model oparty o sieć RBF 

(R2 = 0.837 dla zbioru walidacyjnego). Analiza stopnia wpływu poszczególnych parametrów wejściowych modelu na jego 

wyjście wskazuje, że największy wpływ na Wso mają prędkość przepływu powietrza oraz wielkość kropli. Wysokość belki 

opryskowej oraz kąt nachylenia rozpylacza w znacznie mniejszym stopniu wpływają na Wso. 

Słowa kluczowe: jakość opryskiwania, sztuczne sieci neuronowe, rozkład podłużny 

 

 

1. Introduction 

 

 Liquid atomization has significant influence on spray 

application process especially in terms of chemical methods 

of plant protection. Primary objective of this process is to 

increase the deposition of atomised liquid on the plant sur-

face. It is known, that spraying is one of the most difficult 

stages of plant production. Forster et al. [5, 6] indicate that 

the spraying process consists of the following stages: 

• deposition (the amount of plant protection products that 

has reached the target area and which was the result of 

drift), 

• stopping (the number of droplets that reached the desti-

nation - in case of crops, weeds or pests), 

• absorption (spray absorbed by plant leaves), 

• translocation (amount of absorbed material transferred 

to the site of biological activity). 

 If one of the stages happens less efficient, this situation 

may cause economic loss, environmental pollution, deterio-

ration of food safety, and reduction of biological efficiency 

[21]. Besides, there are a lot of factors which must be taken 

into account: the physical and chemical properties of liquid 

used, atmospheric conditions, as well as technical and tech-

nological parameters [14, 16, 19]. The quality of spraying 

process is determined on the basis of one of three indica-

tors: distribution of precipitation of spray liquid, degree of 

coverage of sprayed objects and deposition of spray liquid. 

Experiments, which were conducted in terms of precipita-

tion of spray liquid, are mainly tests of transverse distribu-

tion liquid. The research on longitudinal liquid precipitation 

are conducted comparatively rarely, due to the difficulty in 

carrying out such experiments. 

 Mathematical models can be used to understand better 

the relationships between technical and environmental pa-

rameters and spray application efficiency. Several mecha-

nistic models of spray drift prediction have been proposed 

in literature: the OML-SprayDrift model [13], a 3Dfully 

mechanistic model [2], and a Gaussian plume model [11]. 

In the case of difficulties in mechanistic model develop-

ment, artificial intelligence methods, such as artificial neu-

ral networks (ANNs), can be used to produce sufficiently 

accurate models. The most popular ANNs for modeling are 

Multilayer Perceptron (MLP) and Radial Basis Function 

(RBF). These techniques were widely used for modeling in 

agricultural applications: by Ghosh et al. [7] for yield mod-

eling, by Johann et al. [8] for soil moisture modeling, by 

Kashi et al. [9] for estimation of soil infiltration and cation 

exchange capacity, and by Wang et al. [20] for monitoring 

nitrogen concentration of oilseed rape. 

 Taking into account that there is still a need for the im-

provement of spray application techniques, it is worth to 

emphasize that ANN techniques can give information about 

the predictor variables’ importance [12] and can be used as 

an objective function in the optimization process [18]. 

 The objectives of the present study was to develop the 

two ANN models (MLP and RBF) of the relationships be-

tween longitudinal precipitation of liquid indicator and noz-

zle type, spray pressure, air flow speed, as well as spray an-
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gle and spray boom height. Based on MLP model, the input 

variables’ importance was determined. 

 

2. Methodology 

2.1. Experimental set-up 

 

 The following parameters of nozzles’ work were used 

for the research: 

 spray boom height h – 0.5; 0.6 m, 

 liquid’s pressure p – 0.2; 0.3; 0.4 MPa, 

 air flow speed vw – 0; 1.5; 3.0; 4.5; 6.0 m∙s-1, 

 set nozzle in a longitudinal plane, perpendicular to the 

ground – 0°; 5°; 15°; 25°, 

 nozzles: dual stream standard DF, air injector IDKT. 

 Experiments on the sprayed liquid distribution were 

conducted on the experimental set-up presented in Fig. 1. 

An aerodynamic tunnel was a primary element of the re-

search stand. A tube straightener was used for the uniformi-

zation of the air flow in wind tunnel. The nozzle was 

mounted on the stand in the aerodynamic tunnel. The stand 

made it possible to change the spraying height. The nozzle 

was placed in a holder that allowed the spray angle to be 

adjusted relative to the substrate and axis of the air duct. 

The air flow was generated by the axial fan, while the speed 

fan was controlled by changing the cross-sectional area of 

the inlet port. The sprayed surface was a groove table. 

 

 Droplet size was measured on a spectral laser analyzer 

"Spraytec" by Malvern Instruments and results are detailed 

in Table 1. 

 

 

Table 1. Characteristics of the nozzles used in the research 

Tab. 1. Charakterystyka rozpylaczy użytych w badaniach 
 

Nozzle Pressure [MPa] Droplet size [µm] 

DF 0.2 127 

DF 0.3 117.8 

DF 0.4 110.5 

IDKT 0.2 553.6 

IDKT 0.3 439.8 

IDKT 0.4 395.3 
 

Source: own work / Źródło: opracowanie własne 
 

 In order to determine the longitudinal precipitation of 

liquid indicator (LPLI), the following formula was used: 

%100


c

i

V

V
LPLI  (1) 

Vi - the sum of the liquid volume from the sprayed surface, 

Vc - the total volume of liquid used for the measurement. 

 

2.2. Artificial neural network development 

 

 ANNs are composed of simple processing elements - 

artificial neurons, which are arranged in layers. The most 

popular ANN architecture is MLP, also called a feed-

forward network. MLP is trained using one of the supervised 

learning algorithms. An MLP used in this research comprises 

three layers: an input layer, a hidden layer, and an output 

layer. The function of the input layer is to map the input 

vector directly to the hidden layer. Neurons in hidden layer 

process input parameters based on weights and biases val-

ues as well as transfer function. The most popular transfer 

functions in MLP networks are sigmoidal and hyperbolic 

tangent. Neurons in output layer produce output signal of 

MLP model from signals generated in hidden layer. The 

MLP training process includes the presentation of training 

data set vectors to network, calculation of network errors, 

and updating the weights and biases. RBF, similarly to 

MLP, is a kind of feed-forward neural network. It is formed 

of three layers: an input layer, always only one hidden lay-

er, and output layer. The function of RBF input layer is 

analogous to MLP. In hidden layer, unsupervised training 

component is involved during training process. The transfer 

function of neurons in hidden layer is a radial activated 

function, and the output neurons implement a weighted sum 

of hidden neurons outputs. The RBF training process in-

cludes adjustment of centers and spreads of radial activated 

function as well as weights of output neurons.  

 The number of neurons in the ANN hidden layer signif-

icantly influences the model’s quality, and is set by a trial 

and error approach. Therefore, the number of neurons in the 

hidden layer of both, MLP and RBF, was set to a range of 

10 to 40. The experimental data set containing 240 data 

vectors was randomly separated into training, test, and vali-

dation sets in a 70:15:15 ratio. 

 

 

 
 

Fig. 1. Scheme of the experimental set-up for the research on the distribution of the sprayed liquid fall in conditions [19] 

Rys. 1. Schemat stanowiska pomiarowego do badań rozkładu podłużnego opadu rozpylonej cieczy [19] 
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The data were normalized into a range a range of 0 to 1. 

Simulations were performed using Statistica 10 software. 

The transfer functions of the neurons in MLP hidden and 

output layers were as follows: sigmoidal, hyperbolic tan-

gent, and exponential. The transfer functions of the neurons 

in RBF hidden layer were Gaussian distribution. For MLP 

model, the 1000 independent ANNs were trained. In the 

case of RBF model, the 500 independent ANNs were 

trained. Model quality assessment was based on the values 

of two indicators, the coefficient of determination (R2) and 

the mean square error (MSE). 
 

2.3. Methods for quantifying variable importance 
 

 ANN models of high accuracy can be used to determine 

the contribution of each independent input variable. In this 

research, the sensitivity analysis implemented in Statistica 

10 was used for this purpose. For various reasons, it is dif-

ficult to select the optimal ANN model, and results of sensi-

tivity analysis based on single ANN model can be mislead-

ing [17]. Therefore, quantifying variable importance was 

conducted based on the group of twenty MLP models with 

the highest R2 and the lowest MSE value. As the final re-

sult, the arithmetical mean of the results produced by the 

twenty ANNs was calculated. 

 

3. Results and discussion 

3.1. Neural models development 
 

 It is worth to emphasize that development of an ANN 

model with linearly dependent input parameters is a meth-

odological mistake. Furthermore, methods of the investiga-

tion of the inputs relative contribution based on that model 

can produce unreliable results [15]. Therefore, the Pear-

son’s correlation coefficients between the explanatory vari-

ables were calculated and results are presented in Table 2. 

 The data presented in Table 2 show that the correlation 

coefficients between the input variables are very low, there-

fore they can be used for neural model development. 

 

3.2. Multilayer Perceptron model 
 

 During simulations, the group of 1000 ANN-MLP struc-

tures was trained with the data set. The following parame-

ters were different in each ANN structure: the number of 

neurons in the hidden layer, the initial connection weight 

vectors, the training algorithm, and the transfer functions of 

the neurons in the hidden and output layer. The parameters 

of the best ANN architecture are detailed in Table 3. The 

MSE values were calculated for normalized data. 

 

Table 2. Correlation coefficients between explanatory vari-

ables (p < 0.05) 

Tab. 2 Współczynniki korelacji liniowej Pearsona dla 

zmiennych niezależnych (p < 0.05) 
 

 
Droplet  

size 

Spray  

boom  

height 

Spray  

angle 

Air flow 

speed 

Droplet size 1.00 0.01 0.01 0.01 

Spray boom 

height 
0.01 1.00 0.01 0.01 

Spray angle 0.01 0.01 1.00 0.01 

Air flow speed 0.01 0.01 0.01 1.00 

Source: own work / Źródło: opracowanie własne 

 

 

 
 

Source: own work / Źródło: opracowanie własne 
 

Fig. 2. Predicted values versus measured values of LPLI 

(validation data set, MLP model) 

Rys. 2. Wartości Wso uzyskane z modelu i z pomiarów (wa-

lidacyjny zbiór danych, model MLP) 

 

 As shown in Table 3, high values of R2 and low values 

of MSE were obtained for the training, test, and validation 

data sets. The value of R2 higher than 0.90 calculated for 

validation data set means that no overfitting effect occurred 

during training process and the ANN model has a high gen-

eralization ability. Therefore, this model can be used for 

practical applications. 

 Fig. 2 depicts the performance of the MLP model 

predicted values of the LPLI vs. the measured values in the 

validation set. 

 

 

Table 3. The parameters of the best ANN structure used as MLP neural model 

Tab. 3. Parametry najlepszej sieci MLP 
 

ANN  

structure 

Coefficient of determination R2 Mean square error 

training data set test data set validation data set training data set test data set validation data set 

4-20-1 0.925 0.931 0.908 0.002 0.002 0.002 
 

Source: own work / Źródło: opracowanie własne 

 
Table 4. The parameters of the best ANN structure used as RBF neural model 

Tab. 4. Parametry najlepszej sieci RBF 
 

ANN structure 
Coefficient of determination R2 Mean square error 

training data set test data set validation data set training data set test data set validation data set 

4-13-1 0.737 0.758 0.837 0.006 0.006 0.003 
 

Source: own work / Źródło: opracowanie własne 
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3.3. Radial Basis Function network model 

 

 When the RBF ANN model was developed, the group 

of 500 ANN structures with different number of neurons in 

hidden layer was trained with the data set. The parameters 

of the best ANN-RBF architecture are presented in Table 4. 

The MSE values were calculated for normalized data. 

 As shown in Table 4, RBF model produced slightly 

lower values of R2 and higher values of MSE for the train-

ing, test, and validation data sets comparing to MLP model. 

In the case of validation data set, the R2 value is higher than 

0.83. It can be stated that RBF model also has a high gener-

alization ability and can be used for practical applications. 

In Fig. 3, the performance of the RBF model predicted val-

ues of the LPLI vs. the measured values in the validation 

set is presented. 

 In the literature, some mechanistic models for drift pre-

diction can be found [2, 11]. The discrepancies between the 

values predicted by the model and experimental values are 

higher than those obtained in our work with the use of MLP 

and RBF models. However, models presented by in [2, 11] 

include more input parameters and take into account some 

other environmental parameters. 

 

 
 

Source: own work / Źródło: opracowanie własne 
 

Fig. 3. Predicted values versus measured values of LPLI 

(validation data set, RBF model) 

Rys. 3. Wartości Wso uzyskane z modelu i z pomiarów (wa-

lidacyjny zbiór danych, model RBF) 

 
 Results obtained in our work show better accuracy of 

MLP model. Similar results were shown by Kashi et al. [9] 

for soil infiltration and cation exchange capacity estimation. 

In their research, R2 values for validation data set were 0.97 

for MLP and 0.86 for RBF in the case of infiltration.. For 

cation exchange capacity they obtained R2 = 0.89 for MLP 

and R2 = 0.74 for RBF. Opposite results were reported by 

Johann et.al [8] for soil moisture modeling. Higher R2 value 

(0.80) was obtained for validation data set for RBF 6-25-1 

than for MLP 6-8-1 (0.79). However, the difference is very 

low and models developed by Johann et.al [8] show lower 

accuracy that models developed in our research. 

 

3.4. Input variables contribution determination 

 

 An analysis of the independent input variables’ contri-

butions was carried out, based on the group of 20 the best 

ANNs chosen from the 1000 MLP models that were devel-

oped during the training process. The selection criterion 

was the highest R2 value and the lowest MSE value calcu-

lated for the validation data set. The number of neurons in 

the hidden layer was in the range of 10 to 40. The R2 values 

were between 0.868 and 0.908. The results of the relative 

importance of the input parameters are presented in Fig. 4. 

As illustrated in Fig. 4, the air flow speed and the droplet 

size, which was affected by the type and pressure of noz-

zles, had the highest influence on LPLI values (more than 

35%). Lower influence was calculated for spray boom 

height (21.23%). Spray angle affects the LPLI only in 

6.63%. Our results are in good agreement with those of 

other researchers. High influence of air flow speed on spray 

drift was reported by Arvidsson et al. and Carlsen et al. [1, 

3]. Also the droplet size was indicated as a very important 

parameter with regard to influencing spraying efficiency 

what was underlined by Kjaer et al. and Zhao et al. [10, 22]. 

Significantly lower impact was observed in the case of 

spray angle what was reported by Foque et al. [4]. 

 

 
 

Source: own work / Źródło: opracowanie własne 
 

Fig. 4. Effect of independent variables in LPLI model 

Rys. 4. Wpływ zmiennych niezależnych modelu na Wso 

 

4. Conclusions 

 

 Many parameters influence the quality of spraying pro-

cess. In this work, the longitudinal precipitation of liquid was 

chosen as the indicator of spraying efficiency. The measure-

ments were conducted in laboratory conditions and five pa-

rameters affected the LPLI: nozzle type, spray pressure, air 

flow speed, spray angle, and spray boom height. In further 

analysis nozzle type and spray pressure were represented by 

droplet size. Two mathematical models based on artificial 

neural networks were developed: MLP and RBF. Both mod-

els were of high accuracy and can be used in real world ap-

plications. However, a little higher R2 values and lower MSE 

values were calculated for MLP model. Based on sensitivity 

analysis of MLP model it can be concluded that LPLI is af-

fected the most by air flow speed and the droplet size. The 

influence of spray boom height and spray angle is signifi-

cantly lower. 
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