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Acoustic and electromagnetic wave phenomena may seem to have a proper formal repre-
sentation in field theory dating from the 19th century, founded on the mathematics of complex
functions. This paper shows, however, that when replacing the classical spectrum-domain ap-
proach related to the assumption of harmonic timeform of signals, with a time-domain approach
imposing no restriction as to the class of time evolution of source and field signals, it is possible to
perform such a description of physical effects and their local, causality-driven mechanisms, that
results in new revelations as to the role of both the physical medium and the wave source in ini-
tiating and conveying phenomena, otherwise perfectly familiar, that carry energy and preserve
signal waveform. It appears that causality and locality are a core of dynamic linear phenomena
in physical continua, leading to the creation of doubly-dynamic states that are observed, at the
approach, in “frozen” conditions.

INTRODUCTION

In the everyday practice of mathematical and applied physics, the notion of acoustic or
electromagnetic field is taken for a primary one, with not much need of a strict definition. This
paper presents an original approach to the field phenomenology, that reveals a fundamental role
played by the local dynamic properties of fluid or dielectric medium in conveying wavefields
across the space. Two-fold dynamics of a medium and the initiating impact of a given source
are revealed as the leading factors of any wavefield phenomenon.

Here we show a procedure and the results of an individual particle-based synthesis of
formulae, relations and equations, as well as an analysis of elementary solutions concerning,
first, local mechanisms of dynamic, linear states and, second, global wave-like effects related to
quasi-point sources of disturbance. Although nearly all elements of the approach are commonly
known and so are in current use in theoretical and applied acoustics and electrodynamics, the



approach is, to the best of the author’s knowledge, totally new as to the sequence of presenta-
tion (introduction) of subsequent aspects (elements). Such a description entails a semantically
unambiguous distinction between local causes and global effects. Fields appear to be related
to a global view of a given dynamic state chosen as a leader of two source-related, localised,
doubly-dynamic states of physical continuum carrying two kinds of energy spread in space out
of the source.

1. METHODOLOGICAL FOUNDATIONS
The approach consists of the description of linear phenomena in two species of physical

media, fluids and dielectrics, based on locality and causality of all dynamic actions. Acoustic and
electromagnetic effects are both analysed at phenomenological level meaning things of nature
as they are revealed to human intuition, susceptible to be measured where they are (locally) with
“simple” means. The synthesis of fundamental relations is performed with causation principle
as a rule, meaning the explicit description of the right sequences of influencing impacts and
resulting events. Mere local, instantaneous medium states are analysed, without any anticipation
of final results. The teleological view based on an a priori knowledge of final results is thus
avoided, and the usual forecast of thewave-like character of field phenomena is not being applied.

It appears particularly fruitful to lay the foundation for analysis with the definition of two
pairs of physical variables in each of two media, as is usually done in electromagnetics. The
causation-oriented relations describe local, instantaneous effects in the two physical continua,
with a noteworthy symmetry and compactness of form.

2. FLUIDS AND DIELECTRICS AS PHYSICAL CONTINUA
Fluids and dielectrics are modelled as physical continua, meaning Euclidean space en-

dowed with specific qualities either mechanical or electromagnetic. The continuum composed
of contiguous, shapeless “particles” or, otherwise, of boundless elementary areas, is the tradi-
tional model introduced by Euler for studying fluid mechanics [1] and considered by Maxwell in
his search for an explanation of electric and magnetic actions at a distance [2]. Mathematically,
a particle is represented by an elemental area with infinitesimal volume.

Particle qualities. Medium is assumed to be principally at rest. Every fluid particle is
both inert and deformable, the respective qualities being characterized by mass density %(x) - in
[kg/m3], and elastic compliance κ(x) - in [1/Pa], as local parameters of the medium. Similarly,
each dielectric particle can be polarised both electrically and magnetically, where electric per-
mittivity ε(x) - in [F/m], and magnetic permeabililty µ(x) - in [H/m] play, respectively, roles of
two independent medium parameters related to a given space localisation.

Two kinds of dynamic states are possible at a given point-like area when it is knocked out
from static rest. We will attribute a pair of physical quantities to a given state, one of them
playing the role of field “intensity” susceptible to a direct measurement, and the other one that
of medium-related field “density”. In this way we extend, onto fluid acoustics, the approach
adopted in electromagnetics, with Maxwell’s displacement current and magnetic induction as
“material” aspects of electric and magnetic phenomena [3].

In Eulerian fluids, inert motion and elastic deformation will thus be described by velocity
v(x, t), in [m/s], and pressure p(x, t), in [Pa], as dynamic state intensities, on one side, and by,
otherwise well-known, momentum density g(x, t) = %(x) v(x, t) in [kg · m· s−1/m3] together



with dimensionless relative volume strain s(x, t) = κ(x) p(x, t), in [m3/m3], on the other side.
Intuitively obvious, the notion of volume strain appears to be fundamental, as it plays the role of
a quantity of elasticity, dual to that of a quantity of motion, played traditionally by momentum
density.

In Maxwellian dielectrics, electrical and magnetic polarisations are described by electric
field intensity E(x, t), in [V/m], and magnetic field intensity H(x, t), in [A/m], as well as by
electric displacement D(x, t) = ε(x) E(x, t) in [C m /m3] and magnetic induction B(x, t) =
µ(x) H(x, t), in [Wb m /m3], the latter being space densities of respective polarisation phenom-
ena.

3. CROSS-DEPENDENCE OF “DENSITIES” ON “INTENSITIES”
The intensities and densities defined in the previous section are mutually related in a criss-

cross manner, by the well-known first-order homogeneous mathematical relations of Euler and
Maxwell. It is crucial for the subsequent analysis to discern their inherent causality meaning
that any inhomogeneity of the space distribution of an intensity induces an instantaneous time
variation of the “opposed”, dual density.

Euler’s relations. In fluid, any pressure gradient at an area causes a time variation of its
momentum density, measured as a change of velocity:

∂

∂t
g(x, t) = − grad p(x, t), (1)

motion variation as the effect⇐ pressure inhomogeneity as a cause.

Similarly, the velocity divergence at the area causes a time variation of its volume strain
and pressure:

∂

∂t
s(x, t) = − div v(x, t), (2)

deformation change as the effect⇐ flow inhomogeneity as a cause.

Both the above relations are due to Euler. The first one is Euler’s equation of dynam-
ics. The second one comes from his equation of continuity derived from the principle of mass
conservation.

Maxwell’s relations. In dielectrics, any curl of electric intensity at an area causes a time
variation of its magnetic induction:

∂

∂t
B(x, t) = − curl E(x, t), (3)

change of magnetic induction as an effect⇐ curly electric intensity as a cause.

In the same manner, a magnetic intensity curl at an area causes a time variation of its
electric induction (i.e. displacement current):

∂

∂t
D(x, t) = + curl H(x, t), (4)

change of electric induction as an effect⇐ curly magnetic intensity as a cause.



The change of the sign in the latter relation, compared to the first three, is worth noting,
distinguishing the Maxwell displacement currents in some way.

Obvious in fluid mechanics, the above interpretation seems to be new in electromagnetics,
where it is suggested that it is a time change of one field effect that creates curly space distribution
of the dual effect. It appears, however, that the causality rule is to be modified. In fact, the cause
and the effect are inverted compared to the classical big-scale causality interpretation, and these
are space effects of given intensity that induce time variation of complementary density.

4. CONSERVATION OF POINT-ATTRIBUTED ENERGY

Instantaneous energy of local continuum area. Both in fluids and dielectric, it is possible
to define the instantaneous space density of energyw(x, t) in [J / m3] localised at a point, namely
that of inert motion and elastic strain of a fluid “particle”:

wac(x, t) =
1

2
s(x, t) p(x, t) +

1

2
g(x, t) · v(x, t) =

1

2

(
κ p2 + % v2

)
, (5)

and that of electric and magnetic polarisations of local dielectric area (dielectric “particle”):

wem(x, t) =
1

2
D(x, t) · E(x, t) +

1

2
B(x, t) ·H(x, t) =

1

2

(
ε E2 + µ H2

)
. (6)

Change of energy density. Now consider a time variation of local energy density. In both
the media it leads to a very interesting space-related result. In a fluid it gives:

∂

∂t
wac = κ p

∂p

∂t
+ % v · ∂v

∂t
= p

∂s

∂t
+ v · ∂g

∂t
, (7)

that, due to equations (1) and (2), is equivalent to:

∂

∂t
wac(x, t) = − p div v − v · grad p = − div

(
p(x, t) v(x, t)

)
. (8)

Similarly, in a dielectric it is:

∂

∂t
wem = ε E · ∂E

∂t
+ µ H · ∂H

∂t
= + E · ∂D

·∂t
+ H · ∂B

∂t
, (9)

being, due to equations (3) and (4), equivalent to:

∂

∂t
wem = E · curl H− H · curl E = − div

(
E(x, t)×H(x, t)

)
. (10)

Local area power flux. The above effect is produced locally within mere direct neighbour-
hood, without any additional conditions. Any change of local energy produces instantaneously
a divergent stream leaving the area, thus fulfilling the requirements of energy conservation in
the absence of external sources. The terms in brackets in equations (8) and (10) have a sense of,
respectively, acoustic and electromagnetic power flux density S(x, t) in [W / m2]:

Sac(x, t) = p(x, t) v(x, t), (11)



and
Sem(x, t) = E(x, t)×H(x, t), (12)

where, for the purpose of integrating the view of dynamic phenomena in the two media, the
usual symbol of acoustic intensity I, has been replaced by Sac, analogous to Poynting’s vector
of electromagnetics S, written here with the appropriate subscript.

Mechanical momentum in fluid and dielectric continuum. It is important to remark here
that the above dot and cross products of intensities, can be applied, as well, to corresponding
densities, which gives a new quantity with the dimension of momentum density [kg m−2 s−1]:

gac(x, t) = s(x, t) g(x, t) = κ(x)%(x) Sac(x, t), (13)

and
gem(x, t) = D(x, t)×B(x, t) = ε(x)µ(x) Sem(x, t). (14)

It appears that although the notion of momentum is related to dynamics of ponderous
matter, momentum density concerns both acoustic and electromagnetic wavefields. In fluids,
the double-state, wave momentum is a new notion, not present in the description of acoustic
phenomena, being something else than the well-known notion of particle momentum. And in
dielectrics, it has no mechanics-related interpretation. However, it accompanies intrinsically the
energy flow of electromagnetic wavefields.

The momentum in dielectrics, first identified by Maxwell, was next perceived by J. J.
Thomson in Poynting’s analysis of electromagnetic power stream. However, to the best of the
author’s knowledge, no such observation has ever been made in acoustics. And it is clear that
the momentum density related to acoustic intensity is s times, i.e. many orders of magnitude,
smaller than that of particle motion.

5. LOCAL CIRCULAR ACTIONS IN DOUBLY-DYNAMIC CONTINUA
The cross-dependence relations of Section 3 can be put in a cause-effect chain in two ways,

depending on what is the primary cause of the particle out-of-rest state. The mathematical pro-
cedure concerning fluid acoustics was presented in [4] and [5], giving two second-order relations
of equal value, with either the pressure or the velocity as a dynamic state variable. An analogous
procedure applied to the cross relations of electromagnetics give, similarly, two second-order re-
lations with either the electric intensity or the magnetic one the role of the variable. A closer look
at all the four results thus obtained, reveals some new conclusions of fundamental importance.

First, there can be no isolated dynamic state at an area, contrary to what is suggested by a
purely mathematical approach defining a field of one variable. In fact, there is always a two-fold
dynamic state being a pair of coupled fields, with one of them being a leader - the one being
first induced at the area, and the other one accompanying the leader, as presented below in four
cases.

In a fluid, when disturbance starts from a space inhomogeneity of pressure (volume strain),
pressure remains the leader at any area and time moment, being described by the second-order
wave relation, while the accompanying velocity (momentum density) value is determined by
Euler’s first-order relation of dynamics. When a nonuniform matter flow velocity (momentum)
is the primary cause of disturbance at an area, particle velocity is a leader, being accompanied
by pressure determined by Euler’s relation of continuity.



A self-affecting compression imbalance. The feedback loop mechanism is shown below
in the example of a self-affecting compression imbalance that results in classical scalar second
order relation with pressure as physical variable:

a) vp = − 1

%

∫
grad p dt, b) pvp = − 1

κ

∫
div vp dt (15)

first effect⇐ primary cause, final effect⇐ secondary cause.

pvp = − 1

κ

∫
div

(
− 1

%

∫
grad p dt

)
dt =

1

κ%

∫∫
div grad p dt2, (16)

pvp ≡ p;
∂2p

∂t2
− 1

κ%
div grad p = 0; vp = − 1

%

∫
grad p dt. (17)

A self-affecting flow imbalance. A self-affecting flow imbalance results in a dual second-
order relation involving particle velocity vector as variable. Starting with:

a) pv = − 1

κ

∫
div v dt, b) vpv = − 1

%

∫
grad pv dt, (18)

first effect⇐ primary cause, final effect⇐ secondary cause.

we get:

vpv ≡ v;
∂2v

∂t2
− 1

κ%
grad div v = 0; pv = − 1

κ

∫
div v dt. (19)

In a dielectric, when disturbance starts from a curly inhomogeneity of electric intensity
(displacement current), the electric dynamic state remains the leader at any area and time mo-
ment, being described by the second-order wave relation, while the accompanying magnetic
intensity (magnetic induction) value is determined by the proper Maxwell’s first-order relation.
When a nonuniform curly magnetic intensity (induction) is a primary cause of disturbance at an
area, the magnetic intensity is the leader, being accompanied by the electric intensity determined
by the other Maxwell’s relation.

A self-affecting electric polarisation imbalance. Similarly to what was performed in fluid
continuum, we show below the like feedback loop mechanism of electric and magnetic local
dynamic states in dielectric continuum. Self-affecting electric polarisation imbalance results in
a vector second order relation with electric intensity as physical variable.

a) HE = − 1

µ

∫
curl E dt, b) EHE = +

1

ε

∫
curl HE dt, (20)

first effect⇐ primary cause, final effect⇐ secondary cause.

EHE ≡ E;
∂2E

∂t2
+

1

εµ
curl curl E = 0; HE = − 1

µ

∫
curl E dt. (21)



A self-affecting magnetic polarisation imbalance. A self-affecting magnetic polarisation
imbalance results in a dual second-order relation involving magnetic polarisation vector as vari-
able. Starting with:

a) EH = +
1

ε

∫
curl H dt, b) HEH = − 1

µ

∫
curl EH dt (22)

first effect⇐ primary cause, final effect⇐ secondary cause.

we get

HEH ≡ H;
∂2H

∂t2
+

1

µε
curl curl H = 0; EH = +

1

ε

∫
curl H dt. (23)

The cause-effect circular action chain at a given “particle” area is, in fact, a physical feed-
back loop effect taking place in with an unequivocal sequence of impact events depending on
what is the input. Just as it happens in time invariant linear systems where space dimensions
are of no concern, the output depends on input, and the result is being produced at a given time
moment, without any time delay, i.e. without involving the passage of time.

The above presented “local-and-frozen circular actions” scheme seems to be the phe-
nomenological mechanism that paradoxically rules in fluids and dielectrics all wave-like effects,
though they involve space and time in a most dynamical way obvious to every observer - user of
sound, radio, and light signals, as well as of all kinds of electromagnetic energy.

6. POINT-SOURCES AND THEIR LOCAL IMPACTS
The results of the previous section, otherwise well-known and mathematically obvious,

carry new evidence: once leading, the dynamic state remains leading throughout all space and
time travel of acoustic or electromagnetic disturbance, while the other is still adjunct to the
former, accompanying it inseparably. Otherwise than is commonly presented in mathematics-
only based approach, it is to be stressed that there is neither an autonomous, source independent
acoustic pressure field nor an autonomous and isolated particle velocity field. And similarly,
an electric intensity field or magnetic intensity field are inherently coupled one to another. The
point is that a leading dynamic state characterised by a related physical quantity or field variable,
is to be somehow induced in the medium in a location and time.

Two kinds of source impacts. Here we show that in each medium there are two distinct
kinds of impact possible, each triggering a specific cause-effect chain of actions, proper to the
primary dynamic state induced in themedium. From this location and time on, a proper sequence
of local dynamic states starts, remaining internally coupled in the way related to the type of
source.

In fluid acoustics, these states are described by either scalar or vector second-order equa-
tion, depending on the scalar or vector nature of the source. Hence the pressure field leads in
the first case and the velocity one in the second case.

In dielectric electromagnetics, one of the second-order equations related to either electric
intensity or magnetic intensity is relevant, according to the electric or magnetic character of the
source.

Quasi-point source area. The formal description of a quasi-point area δ(x) in [1 / m3],
bases on the distribution form of definition:∫

V

δ(x− x0)S(x)dV (x) = S(x0). (24)



There are two kinds of source actions able to influence medium particles. A given point-
like source is able to disrupt the state of rest, introducing a specific disequilibrium into a given
area.

Matter inflow as a simple source (monopole). The source quantity q(x, t) = Q(t) δ(x) in
[1 / s] = [(m3 / s) / m3], is a volume density of fluid matter flowing gently into the point area,
where Q(t), itself, is in [m3 / s]. The flow is assumed to be non-inert, thus causing an elastic
deformation only. It induces, around the source point, a change of strain/pressure as primary
in-fluid effect that becomes, in turn, the input of the subsequent circular actions:

∂

∂t
sQ(x, t) = Q(t) δ(x) (25)

in-fluid primary effect ⇐ point-source action

Force source as a "dipole". External force acts as an acoustic dipole source. The source
quantity f(x, t) = F(t)δ(x) = F (t)δ(x) ı̂F, in [N / m3], is a force density, where F (t) is the
force itself, in [N]. However, that a point force cannot be exerted onto a non-viscous fluid. An
external force can act only by an intermediate of a contact surface, and has to be implemented to
the fluid through a coupling surface. A rigid sphere is a practical intermediary that turns out to
be, as well, perfectly matched to the motion of fluid particles at the interface. The resulting flow
momentum/velocity around the coupling surface is then the primary in-fluid action, the input of
the circular action.

∂

∂t
gF(x, t) = F(t) δ(x) (26)

in-fluid primary effect ⇐ point-source action

Electric dipole. The quasi-point electric sourcep(x, t)=P(t)δ(x)=P (t)δ(x)ı̂P, in [A /m2],
is defined as an infinitesimal electric dipole of the strengthP (t) in [A·m], composed of two time-
varying electric charges q(t) of opposite signs, distant l one from the other. The charges time
rate of change means the electric current Il, flowing in a conducting filament of the length l, and

P (t) =
∂

∂t
q(t) l = Il(t) l.

∂

∂t
DP(x, t) = P(t) δ(x) (27)

in-dielectric primary effect ⇐ point-source action

The above equation describes the initial cause-effect sequence: the electric source action at a
point and the electrical reaction of the dielectric in the direct neighbourhood.

Magnetic dipole. It appears that themagnetic effects can be produced by an electric current
flowing in a conducting filament loop. In a manner analogous to the case of the electric source,
a quasi-point magnetic dipole m(x, t) = M(t)δ(x) =M(t)δ(x) ı̂Σ in [V / m2], is defined, where
the magnetic dipole strengthM(t), in [Vm], is related to the rate of change of the electric current
IΣ turning in a conducting filament loop closing a surface Σ, and involves, as well the medium

permeability µ: M(t) = µ
∂

∂t
IΣ(t)Σ.

∂

∂t
BM(x, t) = M(t) δ(x) (28)

in-dielectric primary effect ⇐ point-source action



Here also the initial cause-effect sequence is present: the magnetic source action at a point and
the magnetic reaction of the dielectric in the direct neighbourhood. The magnetic dipole acts
on a purely magnetic principle, influencing merely the magnetic dynamics, with no electric
displacement dynamic state involved on a primary foot.

7. LOCAL CIRCULAR ACTIONS INITIATED BY SOURCES

Compression-initiated imbalance. Compression imbalance induced by external matter
inertia-less inflow:

pQ(x, t) =
1

κ

∫
Q(t)δ(x)dt, (29)

in-fluid primary effect⇐ external cause (source operation).

pQ(x, t) =
1

κ%

∫∫
div grad pQ(x, t)dt2 +

1

κ

∫
Q(t)δ(x)dt, (30)

∂2

∂t2
pQ(x, t)− 1

κ%
div grad pQ(x, t) =

1

κ
∂

∂t
Q(t)δ(x), (31)

vQ(x, t) = −1

%

∫
grad pQ(x, t)dt. (32)

No motion effect at the source point is observed in the beginning, only an elastic reaction of fluid
continuum, that means the % ≡ 0 inertia-less start of the disturbance.

Motion-initiated imbalance. Flow imbalance induced by external deformation-less force
impact:

vF(x, t) =
1

%

∫
F(t)δ(x)dt, (33)

in-fluid primary effect⇐ external cause (source operation).

vF(x, t) =
1

%κ

∫∫
grad div vF(x, t)dt

2 +
1

%

∫
F(t)δ(x)dt, (34)

∂2

∂t2
vF(x, t)−

1

%κ
grad div vF(x, t) =

1

%

∂

∂t
F (t)δ(x) ı̂F, (35)

pF(x, t) = − 1

κ

∫
div vF(x, t)dt. (36)

No deformation effect at the source point is observed, only a motion reaction of fluid continuum,
that means a κ ≡ 0 start "scenario".

Electric polarisation. Electric polarisation imbalance induced by magnetism-less electric
dipole:

EP(x, t) =
1

ε

∫
P(t)δ(x) dt (37)

in dielectric effect ⇐ external cause (source operation) (38)



EP(x, t) = − 1

εµ

∫∫
curl curl EP(x, t) dt2 +

1

ε

∫
P(t)δ(x)dt, (39)

∂2

∂t2
EP(x, t) +

1

εµ
curl curl EP(x, t) =

1

ε

∂

∂t
P (t)δ(x) ı̂P, (40)

HP(x, t) = − 1

µ

∫
curl EP(x, t) dt. (41)

No magnetic effect at the electric dipole point is observed, only an electric reaction of dielectric
continuum, that means the µ ≡ 0 "scenario" at the start.

The above equation describes the cause-effect sequence: source action at a point - vacuum
reaction in the surrounding neighbourhood.

Magnetic polarisation. Magnetic polarisation imbalance induced by the magnetic dipole:

HM(x, t) =
1

µ

∫
M(t)δ(x) dt (42)

in-dielectric initial effect ⇐ external cause (source operation) (43)

HM(x, t) = − 1

µε

∫∫
curl curl HM(x, t) dt2 +

1

µ

∫
M(t)δ(x) dt, (44)

∂2

∂t2
HM(x, t) +

1

µε
curl curl HM(x, t) =

1

µ

∂

∂t
M(t)δ(x) ı̂M, (45)

EM(x, t) = +
1

ε

∫
curl HM(x, t) dt. (46)

No electric effect at the source point is observed, only magnetic reaction of dielectric continuum,
meaning an ε ≡ 0 start "scenario".

Although direct means to apply magnetic-only effects in physical space, we will follow the
derivation as if it were possible, in analogous way as was made with point force applied to fluid.

8. “AT-A-DISTANCE” IMPLICATIONS OF POINT SOURCES ACTION
In fundamental wavefields initiated by point sources, up to three components can be dis-

tinguished, each following the source quantity signal form, though in different way. The time
evolution of the wave component is that of time source quantity time differential. The "induc-
tion" component follows directly the source timeform, and the quasi-static one that of the source
quantity integral.

Scalar fundamental solutions. In the case of an extra matter inflow/outflow Q(t), i.e. a
scalar source, the cause-effect chain leads to a double time integral relation that can be reduced
to the equivalent differential form [4]:

∂2

∂t2
pQ(x, t)− 1

κ%
div grad pQ(x, t) =

1

κ
∂

∂t
Q(t)δ(x). (47)

For calculating the field described by the above equation, use is made of the pure mathe-
matical time-space differential equation related to an impulsive scalar point source, known as the



inhomogeneous wave equation, with the so-called Green’s function as its solution, with the time
evolution variable in a delayed form, namely (t− r/c), related to the distance r from the source
and a medium dynamic parameter c being the celerity of the disturbance transport spread. The
celerity appears to be equal to the inverted geometric mean of the relative medium parameters:

cac(x) =
(
κ(x)%(x)

)−1/2

and cem(x) =
(
ε(x)µ(x)

)−1/2

(48)

Pressure and velocity in the inflow-source wavefield. By virtue of the superposition prin-
ciple, the solution of the equation (47) becomes:

pQ(x, t) =
%

4πr

∂

∂t
Q(t− r/c), (49)

with the accompanying velocity field calculated from rel. 15 a), as follows:

vQ(r, t) = r̂
√
κ%

1

4πr

[
∂

∂t
Q(t− r/c) +

c

r
Q(t− r/c)

]
= vQa(r, t) + vQd(r, t) (50)

Irrotational velocity vector equations. The action-reaction causal chain initiated by an
external force F (t), leads to the following equation dual to eq. 47:

∂2

∂t2
vF(x, t)−

1

%κ
grad div vF(x, t) =

1

%

∂

∂t
F (t)ı̂Fδ(x). (51)

Velocity and pressure in the force-source wavefield. As shown in [4], the solution of the
equation (51) is:

vF(r, ϑ, t) = r̂ cosϑ κ
1

4πr

∂

∂t
F (t− r/c)

+ (2r̂ cosϑ+ ϑ̂ sinϑ)

√
κ
%

1

4πr2
F (t− r/c)

+ (2r̂ cosϑ+ ϑ̂ sinϑ)
1

%

1

4πr3

∫
F (t− r/c)dt (52)

= vFac(r, ϑ, t) + vFhd(r, ϑ, t) + vFqs(r, ϑ, t)

with the accompanying velocity field calculated from rel. 18 a), as follows:

pF(x, t) = cosϑ
√
%κ

1

4πr

[
∂

∂t
F (t− r/c) +

c

r
F (t− r/c)

]
= pFac(r, ϑ, t) + pFhd(r, ϑ, t) (53)

Nondivergent electric intensity vector equation. The cause-effect chain initiated by an
electric dipole P (t), leads to the following equation analogous to eq. 51:

∂2

∂t2
EP(x, t) +

1

εµ
curl curl EP(x, t) =

1

ε

∂

∂t
P (t)ı̂Pδ(x). (54)



This case is much similar to the former one with, however, significant difference in the radiation
terms.

Electric and magnetic intensities in the electric-dipole wavefield. The fundamental solu-
tion concerning the electric intensity are well known:

EP(r, ϑ, t) = ϑ̂ sinϑ µ
1

4πr

∂

∂t
P (t− r/c)

+ (2r̂ cosϑ+ ϑ̂ sinϑ)

√
µ

ε

1

4πr2
P (t− r/c)

+ (2r̂ cosϑ+ ϑ̂ sinϑ)
1

ε

1

4πr3

∫
P (t− r/c)dt (55)

= EPrad(r, ϑ, t) + EPind(r, ϑ, t) + EPqes(r, ϑ, t)

with the accompanying magnetic intensity field calculated from rel. 18 a), as follows:

HP(r, ϑ, t) = + ϕ̂ sinϑ
√
εµ

1

4πr

[
∂

∂t
P (t− r/c) +

c

r
P (t− r/c)

]
= HPrad(r, ϑ, t) + HPind(r, ϑ, t) (56)

Nondivergent magnetic intensity vector equations. The cause-effect chain initiated by a
magnetic dipoleM(t), leads to the following equation dual to eq. 54:

∂2

∂t2
HM(x, t) +

1

µε
curl curl HM(x, t) =

1

µ

∂

∂t
P (t)ı̂Mδ(x). (57)

The solutions turns out to be perfectly symmetric to the former ones.

Magnetic intensity in the magnetic-dipole wavefield. Here the fundamental solution con-
cerning the magnetic intensity is:

HM(r, ϑ, t) = ϑ̂ sinϑ ε
1

4πr

∂

∂t
M(t− r/c)

+ (2r̂ cosϑ+ ϑ̂ sinϑ)

√
ε

µ

1

4πr2
M(t− r/c)

+ (2r̂ cosϑ+ ϑ̂ sinϑ)
1

µ

1

4πr3

∫
M(t− r/c)dt (58)

= HMrad(r, ϑ, t) + HMind(r, ϑ, t) + HMqms(r, ϑ, t)

with the accompanying electric intensity field calculated from rel. 18 a), as follows:

EM(r, ϑ, t) = − ϕ̂ sinϑ
√
µε

1

4πr

[
∂

∂t
M(t− r/c) +

c

r
M(t− r/c)

]
= EMrad(r, ϑ, t) + EMind(r, ϑ, t) (59)

A symmetry between the two fundamental electromagnetic fields is much closer than between
the fundamental acoustic fields.

Components of inhomogeneous equations fundamental solutions. In fundamental wave-
fields initiated by point sources, up to three components can be distinguished, each following



the source quantity timeform but in different ways. The time evolution of the wave component
is that of time source quantity time differential. The "induction" component follows directly the
source timeform, and the quasi-static one that of the source quantity time integral.

In the radiation terms of the source-point wavefields, indicated with rad subscripts, dual
dynamic quantities are proportional to each other, enabling the use of the notions of medium
impedance and admittance, otherwise related to mere plane waves.

The approach covers all kinds of signals with no restriction other than the limitation of
finite integral of source quantity waveform, meaning the finite source energy. And it helps to
recognise and identify the fundamental aspects of the phenomena.

The fundamental, core effects can hardly be picked out with the time-frequency approach,
and even more so with the space-frequency notion, the first being acausal, spanned onto all the
past and all the future, the second - spread onto all the space.

9. LOCAL PROVENIENCE OF DYNAMIC PHENOMENA CELERITY
As it was shown in Section 4, the physical quantities of practical importance related to local

energy, power stream, and momentum have appeared to be principally the same, though the two
media are fundamentally different, and so are their local dynamic states. It is worth stressing here
that the analysis there performed concerned merely a given elemental area of medium without
leaving it whatsoever, and the notion of celerity appears for the first time only in the solutions
of the second-order dynamic state relations known as homogeneous wave equations.

The mutual proportionality of dual wavefield intensities and densities leads directly to a
significant observation. The principle of energy andmomentum transport appears to be the same
in both media, the disturbance they are related to, being conveyed by the medium with its proper
celerity:

Sac = wac cac and Sem = wem cem (60)

The above means, as well, the following formulae related energy and momentum densities
with corresponding celerities :

gac = wac/cac and gem = wem/cem (61)

The latter relations, however, have no direct interpretation if not that momenta of plane
wave disturbances are extremely small, especially in the case of electromagnetics. The results
of the Section give strong arguments for treating the dynamic phenomena of acoustics and elec-
tromagnetics on the same foot.

10. CONCLUSIONS
The consequent application of phenomena-founded description of local effects reveals

new, weighty aspects of wavefield behaviour. It becomes clear that the true reason for huge
wave celerity resides directly in every elementary region of the medium.

When dealing with dynamic phenomena in physical spaces, namely acoustic and elec-
tromagnetic wavefields, a mathematics-founded view prevails, preferring an approach focused
on waves and their global features related to largely known class of possible solutions of wave
equation.

It turns out to be more beneficial to clearly distinguish between the phenomenon-focused
description of two-fold dynamics acting at each point of physical space, and the classical formal



description based on field theory mathematics, and admit unambiguous definitions of current
notions, otherwise use in an ambiguous, context-defined way. Hence a distinction is introduced
and consistently followed between notions of formula, relation and equation. A formula defines
a quantity in terms of other quantities and is mostly a description of several aspects of the same
phenomenon. It is a somehow internal relation. A relation describes equilibrium conditions
at force in any moment in each medium area. It results in a locally defined dynamic action
between autonomous quantities being somehow external to each other. An equation describes a
particular situation related to an action of a source. The idea to strive for semantic unambiguity
was is inspired by Whithead’s view of space, time, and physical phenomena discussed in [6].

In the sense of the above definitions, a formula serves to calculate, at a point, the value
of one quantity from the known values of other quantities. In terms of mathematics, relation
means an homogeneous equation that allows to calculate the time-space distribution of a quan-
tity in continuum, in absence of sources, thus having myriads of possible solutions. And there
is one and only one possible solution of what we call equation, being the mathematically inho-
mogeneous one.

In common practice, equation is a term equally used in all three of the above mentioned
cases. Each of them being semantically so different, such a habit promotes a blurred thinking and
mitigates against a precise understanding of the true meaning of a particular formal description
of physical phenomena. In the author’s opinion, this can be the reason for the existing oversight
of the dynamic essence of wavefield phenomena.

It appears that the classical methodology, although giving results that are both mathemati-
cally correct and technologically useful, overlooks, to a large extent, local causality mechanisms,
thus ignoring effects of significant phenomenological consequences.
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