PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Combined Effect of CrB2 Micropowder and VN Nanopowder on the Strength and Wear Re-sistance of Fe‒Cu–Ni–Sn Matrix Diamond Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents research results on the enhancement of diamond composites designed for tools application for mining industry, hard rocks cutting, able to withstand harsh conditions under heavy dynamical loads. In the present study, both CrB2 micropowder and VN nanopowder additives were used in proportions up to 5 wt.% and 6 wt.%, respectively, together with the basic matrix composition of 51 wt.% Fe, 32 wt.% Cu, 9 wt.% Ni, and 8 wt.% Sn. Addition of both components, CrB2 and VN, appeared to be ad-vantageous in proportion of 2 wt.% and 4 wt.%, respectively. This composition exhibited the highest relative density of 0.9968, better than that without additives. Similarly, the highest values of compressive strength Rcm and flexural strength Rbm were reached for the composite with the same percentage of CrB2 and VN. Compared to the composite with no addition of CrB2 and VN, Rcm improved by almost 70%, while Rbm by 81%. Additionally, the abovementioned additives enhanced the ability of the matrix to prevent the diamond reinforcement from being torn out of the composite, which is very important under harsh working conditions of the cutting tools. The presence of CrB2 micropowder and VN nanopowder promoted densification of the matrix and adhesion between the diamond grits and the Fe‒Cu–Ni–Sn matrix.
Twórcy
  • Satbayev University, Institute of Geology and Oil and Gas K. Turysova, Department of Geophysics, Satpaev Str., 22, 050013, Almaty, Republic of Kazakhstan
  • V. Bakul Institute for Superhard Materials of the NAS of Ukraine, Avtozavodska Str. 2, 04074 Kyiv, Ukraine
  • Institute of Mechanical Science, Vilnius Gediminas Technical University, J. Basanaviciaus Str. 28, LT-03224 Vilnius, Lithuania
  • Faculty of Mechanical Engineering, Kazimierz Pułaski University of Technology and Humanities, Stasieckiego Str. 54, 26-600 Radom, Poland
  • Institute of Mechanical Science, Vilnius Gediminas Technical University, J. Basanaviciaus Str. 28, LT-03224 Vilnius, Lithuania
  • V. Bakul Institute for Superhard Materials of the NAS of Ukraine, Avtozavodska Str. 2, 04074 Kyiv, Ukraine
  • Faculty of Mechanical Engineering, Kazimierz Pułaski University of Technology and Humanities, Stasieckiego Str. 54, 26-600 Radom, Poland
  • Satbayev University, Institute of Geology and Oil and Gas K. Turysova, Department of Geophysics, Satpaev Str., 22, 050013, Almaty, Republic of Kazakhstan
  • Faculty of Mechanical Engineering, Kazimierz Pułaski University of Technology and Humanities, Stasieckiego Str. 54, 26-600 Radom, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka Str. 36, 20-618 Lublin, Poland
  • Satbayev University, Institute of Geology and Oil and Gas K. Turysova, Department of Geophysics, Satpaev Str., 22, 050013, Almaty, Republic of Kazakhstan
  • Department of Reactor Engineering Materials and Physical Technologies, V.N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
  • V. Bakul Institute for Superhard Materials of the NAS of Ukraine, Avtozavodska Str. 2, 04074 Kyiv, Ukraine
Bibliografia
  • 1. Sun Y., Zhang C., He L., Meng Q., Liu B.-C., Gao K., Wu J. Enhanced bending strength and thermal conductivity in diamond/Al composites with B4C coating. Scientific Reports 2018; 8: 11104. https://doi.org/10.1038/s41598-018-29510-7.
  • 2. Ivasiv V., Yurych A., Zabolotnyi S., Yurych L., Bui V., Ivasiv O. Determining the influ- ence of the condition of rockdestroying tools on the rock cutting force. Eastern-European Journal of Enterprise Technologies 2020; 1(103): 15–20.
  • 3. Ratov B.T., Fedorov B.V., Kuttybaev A.E., Sarbopeeva M.D., Borash B.R. Drilling tools with compound cutting structure for hydrological and geotechnical drilling. MIAB. Mining Inf. Anal. Bull. 2022; (9): 42–59. https://doi.org/10.25018/0236_1493_2022_9_0_42 [In Russian].
  • 4. Malevich N., Müller C.H., Dreier J., Kansteiner M., Biermann D., De Pinho Ferreira M., Tillmann W. Experimental and statistical analysis of the wear of diamond impregnated tools. Wear 2021; 468–469: 203574. https://doi.org/10.1016/j.wear.2020.203574.
  • 5. Brook B. Principles of diamond tool technology for sawing rock. International Journal of Rock Mechanics and Mining Sciences 2002; 39(1): 41–58. https://doi.org/10.1016/S1365-1609(02)00007-2.
  • 6. Menezes P.L. Influence of rock mechanical properties and rake angle on the formation of rock fragments during cutting operation. The International Journal of Advanced Manufacturing Technology 2017; 90: 127–139.
  • 7. Aribowo A.G., Wildemans R., Detournay E., van de Wouw N. Drag bit/rock interface laws for the transition between two layers. International Journal of Rock Mechanics and Mining Sciences 2022; 150; 104980. https://doi.org/10.1016/j.ijrmms.2021.104980.
  • 8. Hu H., Chen W., Deng C., Yang J. Effect of matrix composition on the performance of Fe-based diamond bits for reinforced concrete structure drilling. Int. J.Refract. Met. Hard Mater. 2021; 95: 105419.
  • 9. Vynohradova O.P., Zakora A.P., Shul’zhenko A.A., Gargin V.G., Sokolov A.N., Efrosinin D.V., Zakora I.A. Comparative Evaluation of the Performance of Drill Bits with a Diamond-Containing Matrix and Inserts Made of Diamond-Containing Composites. J. Superhard Mater. 2022; 44: 57–61. https://doi.org/10.3103/S1063457622010099
  • 10. He T., Zhang S., Kong X., Wu J., Liu L., Wu D., Su Z. Influence of diamond parameters on microstructure and properties of copper-based diamond composites manufactured by Fused Deposition Modeling and Sintering (FDMS). Journal of Alloys and Compounds 2023; 931: 167492. https://doi.org/10.1016/j.jallcom.2022.167492.
  • 11. Saba F., Zhang F., Liu S., Liu T. Reinforcement size dependence of mechanical properties and strengthening mechanisms in diamond reinforced titanium metal matrix composites. Composites Part B: Engineering 2019; 167: 7–19. https://doi.org/10.1016/j.compositesb.2018.12.014.
  • 12. Huang Y., Zhang F., Zha M., Zhu M., Zhou Y., Tang H., Xie D. Mechanical properties and tribological behavior of Fe/nano-diamond composite prepared by hot-press sintering. Int. J. Refract. Met. Hard Mater. 2021; 95: 105412.
  • 13. Su Z., Zhang S., Wu J. Effect of nickel-plated graphite on microstructure and properties of matrix for Fe-based diamond tools. Transactions of Nonferrous Metals Society of China 2022: 32(5): 1575–1588. https://doi.org/10.1016/S10036326(22)65894-1.
  • 14. Li M., Sun Y., Meng Q., Wu H., Gao K., Liu B. Fabrication of Fe-based diamond composites by pressureless infiltration. Materials 2016; 9: 1006.
  • 15. Borowiecka-Jamrozek J.M., Konstanty J., Lachowski J. The application of a ball-milled Fe–Cu–Ni powder mixture to fabricate sintered diamond tools. Arch. Found. Eng. 2018; 18(1): 5–8.
  • 16. Cygan-Bączek E., Wyżga P., Cygan S., Bała P., Romański A. Improvement in Hardness and Wear Behaviour of Iron-Based Mn–Cu–Sn Matrix for Sintered Diamond Tools by Dispersion Strengthening. Materials 2021: 14: 1774. https://doi.org/10.3390/ma14071774.
  • 17. Mamalis A., Mechnik V., Morozow D., Ratov B., Kolodnitskyi V., Samociuk W., Bondarenko N. Properties of Cutting Tool Composite Material Diamond–(Fe–Ni–Cu–Sn) Reinforced with Nano-VN. Machines 2022; 10(6): 410. https://doi.org/10.3390/machines10060410.
  • 18. Kim D.-Y., Choi H.-J. Recent Developments towards Commercialization of Metal Matrix Composites. Materials 2020; 13(12): 2828. https://doi.org/10.3390/ma13122828
  • 19. Yin S., Xie Y., Cizek J., Ekoi E.J., Hussain T., Dowling D.P., Lupoi R. Advanced diamond reinforced metal matrix composites via cold spray: Properties and deposition mechanism. Composites Part B: Engineering 2017; 113: 44–54. https://doi.org/10.1016/j.compositesb.2017.01.009.
  • 20. Han P., Lu X., Li W., Zou W. Influence of Ni, Fe and Co on the microstructure and properties of 75% Cu–25% Sn alloy in hot pressing. Vacuum 2018; 154: 359–365, https://doi.org/10.1016/j.vacuum.2018.05.016.
  • 21. Konstanty J. Powder Metallurgy Diamond Tools. Elsevier, 2005.
  • 22. Gevorkyan E., Mechnik V., Bondarenko N., Vovk R., Lytovchenko S., Chishkala V., Melnik O. Peculiarities of obtaining diamond–(Fe–Cu–Ni–Sn) hot pressing. Functional Materials 2017; 24: 31–45.
  • 23. Kolodnits’kyi V.M., Bagirov O.E. On the structure formation of diamond-containing composites used in drilling and stone-working tools (A review). J.Superhard Mater. 2017; 39(1): 1–17.
  • 24. Li S., Han Z., Meng Q., Zhao X., Cao X., Liu B. Effect of WC Nanoparticles on the Microstructure and Properties of WC-Bronze-Ni-Mn Based Diamond Composites. Applied Sciences 2018; 8(9): 1501. https://doi.org/10.3390/app8091501.
  • 25. Denkena B., Grove T., Bremer I., Behrens L. Design of bronze-bonded grinding wheel properties. CIRP Ann. - Manuf. Technol. 2016; 65: 333–336.
  • 26. Novak P., Belezze T., Cabibbo M., Gamsjager E., Wiessner M., Rajnovic D., Jaworska L., Hanus P., Shishkin A., Goel G., Goel S. Solurions of critical raw materials issues regarding iron-based alloys. Materials 2021; 14: 899.
  • 27. Li M., Jiang X., Chen Y., Yang X. Hole surface morphology and tool wear mechanisms during cutting3D carbon/carboncompositesusing diamond core drill. Ceramics International 2022, in Press, https://doi.org/10.1016/j.ceramint.2022.10.128.
  • 28. Sagradyan A.I., Agbalyan S.G., Martirosyan A.M., Ordyan N.A., Pogosyan H.V. Extending life of diamond tools for machining nonmetallic materials. J. Superhard Mater. 2018; 40(3): 216–221.
  • 29. Liu C., Zhou F., Man Z., Liu Y. Analysis of drilling failure in soft and hard sandwiching of coal seam. Engineering Failure Analysis 2016; 59: 544–553. https://doi.org/10.1016/j.engfailanal.2015.10.022.
  • 30. Xiang J., Xie L., Gao F., Yi J., Pang S., Wang X. Diamond tools wear in drilling of SiCp/Al matrix composites containing Copper. Ceram. Int. 2018; 44: 5341–5351.
  • 31. Ratov, B.T., Mechnik, V.A., Kolodnitsky, V.M., Kuttybayev, A., Muzapparova, A. Drilling inserts of theWC-Co-CrB2 system with increased mechanical properties. (2021) International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 21 (1.1), 617–626. DOI: 10.5593/sgem2021/1.1/s06.111.
  • 32. Ratov B.Т., Mechnik V.А., Gevorkyan S., Matijosius J., Kolodnitskyi V.М., Chishkala V.А., Kuzin N.О., Siemiatkowski Z., Rucki M. Influence of CrB2 additive on the morphology, structure, microhardness and fracture resistance of diamond composites based on WC‒Co matrix. Materialia, 2022; 25: 101546. https://doi.org/10.1016/j.mtla.2022.101546.
  • 33. Mechnik V.A. Production of diamond–(Fe–Cu–Ni–Sn) composites with high wear resistance. Powder Metall. Met. Ceram. 2014; 52(9–10): 577–587.
  • 34. Mechnik V.A., Bondarenko N.A., Kolodnitskyi V.M., Zakiev V.I., Zakiev I.M., Gevorkyan E.S., Kuzin N.O., Yakushenko O.S., Semak I. V. Comparative study of the mechanical and tribological characteristics of Fe–Cu–Ni–Sn composites with different CrB2 content under dry and wet friction. Journal of Superhard Materials 2021; 43(1): 52–64.
  • 35. Han Y., Zhang S., Bai R., Zhou H., Su Z., Wu J., Wang J. Effect of nano-vanadium nitride on microstructure and properties of sintered Fe–Cu-based diamond composites. Int. J. Refract. Met. Hard Mater. 2020; 91: 105256.
  • 36. Mechnik V.A., Bondarenko N.A., Kuzin N.O., Gevorkian E.S. Influence of the addition of vanadium nitride on the structure and specifications of a diamond–(Fe–Cu–Ni–Sn) composite system. J. Frict. Wear. 2018; 39(2): 108–113.
  • 37. Chen X., Du Y., Chung Y.W. Commentary on using H/E and H3/E2 as proxies for fracture toughness of hard coatings. Thin Solid Films 2019; 688: 137265.
  • 38. Weaver J.C., Wang Q., Miserez A., Tantuccio A., Stromberg R., Bozhilov K.N., Maxwell P., Nay R., Heier S.T., DiMasi E., Kisailus D. Insight Analysis of an ultra hard magnetic biomineral in chiton radular teeth. Materials Today 2010; 13(1‒2): 42‒52.
  • 39. Tokita M. Progress of Spark Plasma Sintering (SPS) Method, Systems. Ceramics Applications and Industrialization. Ceramics 2021; 4: 160–198. https://doi.org/10.3390/ceramics4020014.
  • 40. Stuer M., Bowen P., Zhao Z. Spark Plasma Sintering of Ceramics: From Modeling to Practice. Ceramics 2020; 3: 476–493. https://doi.org/10.3390/ceramics3040039.
  • 41. Gevorkyan E.S., Rucki M., Chishkala V.A., Kislitsa M.V., Siemiatkowski Z., Morozow D. Hot pressing of tungsten monocarbide nanopowder mixtures by electroconsolidation method. Journal of Machine Construction and Maintenance 2019; 113(2): 67–73.
  • 42. Azevêdo H., Raimundo R., Silva D., Morais L., Macedo D., Cavalcante D., Gomes U. Microstructure and mechanical properties of Al2O3-WC-Co composites obtained by spark plasma sintering. International Journal of Refractory Metals and Hard Materials 2021; 94: 105408.
  • 43. Dai W., Yue B., Chang S., Bai H., Liu B. Mechanical properties and microstructural characteristics of WC-bronze-based impregnated diamond composite reinforced by nano-NbC. Tribology International 2022; 174: 107777. https://doi.org/10.1016/j.triboint.2022.107777.
  • 44. Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 2004; 19(1): 3–20.
  • 45. Mechnik V.A., Bondarenko N.A., Kolodnitskyi V.M., Zakiev V.I., Zakiev I.M., Ignatovich S.R., Dub S.N., Kuzin N.O. Formation of Fe-Cu-Ni-Sn-VN nanocrystalline matrix by vacuum hot pressing for diamond-containing composite. MechanIcal and Tribological Properties. J. Superhard Mater. 2019; 41(6): 388−401.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b18fb99c-5eea-463a-bd54-62de784a4646
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.