Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, infinite horizon optimal control problems subject to semilinear parabolic equations are investigated. A finite number of only time-dependent controls intervening at disjoint positions in the space domain are considered. The controls are subject to integral constraints and a term is included in the cost functional that promotes control sparsity. The existence of optimal controls is proven, first and second order optimality conditions are derived, and the approximation by finite horizon control problems is addressed.
Czasopismo
Rocznik
Tom
Strony
11--42
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
- Departmento de Matemática Aplicada y Ciencias de la Computacíon, E.T.S.I. Industriales y de Telecomunicacíon, Universidad de Cantabria, 39005 Santander, Spain
autor
- Institute for Mathematics and Scientific Computing, University of Graz, A-8010 Graz, Austria, and Radon Institute, Austrian Academy of Sciences, A-4040 Linz, Austria
Bibliografia
- Aseev, S., Krastanov, M. and Veliov, V. (2017) Optimality conditions for discrete-time optimal control on infinite horizon. Pure Appl. Funct. Anal., 2(3):395–409.
- Azmi, B., Kunisch, K. and Rodrigues, S. (2021) Saturated feedback stabilizability to trajectories for the Schlögl parabolic equation. IEEE Transactions on Automatic Control, 68(12), 7089–7103.
- Basco, V., Cannarsa, P. and Frankowska, H. (2018) Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 8(3-4):535–555.
- Carlson, D., Haurie, A. and Leizarowitz, A. (1991) Infinite Horizon Optimal Control. Deterministic and Stochastic Systems. Springer-Verlag, Berlin. Second revised and enlarged edition of the 1987 original.
- Casas, E. (2012) Second order analysis for bang-bang control problems of PDEs. SIAM J. Control Optim., 50(4):2355–2372.
- Casas, E., Herzog, R. and Wachsmuth, G. (2012) Optimality conditions and error analysis of semilinear elliptic control problems with L1 cost functional. SIAM J. Optim., 22(3):795–820.
- Casas, E., Herzog, R. and Wachsmuth, G. (2017) Analysis of spatiotemporally sparse optimal control problems of semilinear parabolic equations. ESAIM Control Optim. Calc. Var., 23:263–295.
- Casas, E. and Kunisch, K. (2022) Infinite horizon optimal control problems for a class of semilinear parabolic equations. SIAM J. Control Optim., 60(4):2070–2094.
- Casas, E. and Kunisch, K. (2023a) Infinite horizon optimal control for a general class of semilinear parabolic equations. Appl. Math. Optim., 88: Paper No. 47, 36.
- Casas, E. and Kunisch, K. (2023b) Infinite horizon optimal control problems with discount factor on the state. Part II: Analysis of the control problem. SIAM J. Control Optim., 61(3):1438–1459.
- Casas, E. and Kunisch, K. (2024a) First and second order optimality conditions for the control of infinite horizon Navier Stokes equations. Optimization. To appear in CPAA.
- Casas, E. and Kunisch, K. (2024b) Space-time L∞-estimates for solutions of infinite horizon semilinear parabolic equations. 12 June 2024. DOI: 10.1080/02331934.2024.2358406.
- Casas, E. and Mateos, M. (2020) Critical cones for sufficient second order conditions in pde constrained optimization. SIAM J. Optim., 30(1):585–603.
- Casas, E., Mateos, M. and R¨osch, A. (2019) Error estimates for semilinear parabolic control problems in the absence of Tikhonov term. SIAM J. Control Optim., 57(4):2515–2540.
- Casas, E. and Tr¨oltzsch, F. (2015) Second order optimality conditions and their role in pde control. Jahresber Dtsch Math-Ver, 117(1):3–44.
- Casas, E. and Tr¨oltzsch, F. (2016) Second order optimality conditions for weak and strong local solutions of parabolic optimal control problems. Vietnam J. Math., 44(1):181–202.
- Disser, K., ter Elst, A. F. M. and Rehberg, J. (2017) Hölder estimates for parabolic operators on domains with rough boundary. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 17(1):65–79.
- Dunn, J. (1998) On second order sufficient conditions for structured nonlinear programs in infinite-dimensional function spaces. In: A. Fiacco, ed., Mathematical Programming with Data Perturbations, 83–107, New York.
- Marcel Dekker. Halkin, H. (1974) Necessary conditions for optimal control problems with infinite horizons. Econometrica, 42(2):267–272.
- Maurer, H. and Zowe, J. (1979) First and second order necessary and sufficient optimality conditions for infinite-dimensional programming problems. Math. Programming, 16: 98–110.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b18d15ba-551c-44f8-9d5e-99d50cdce8f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.