PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elastic modulus for long-term evaluation of the tensile properties of polypropylene meshes in an in vivo rat model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mid-urethral slings have become the gold standard treatment of stress urinary incontinence in women. Their tensile properties should be evaluated to measure how they wear off with time. Our objective was long-term assessment of the tensile properties of 2 synthetic tapes (TVT-O and I-STOP) after in vivo implantation in rats in terms of elastic modulus. Methods: Strips from both meshes were implanted in the abdominal wall of 30 rats, which were sacrificed at 5 time intervals. Their fibers were untangled to single components. Ultimate tensile strength (UTS), strain at UTS and the elastic modulus of each fiber type were measured. Results: I-STOP maintained UTS and strain over time, while TVT-O UTS and strain were significantly reduced. However, the elastic modulus of both tapes remained constant. Conclusions: Both meshes maintained their stiffness and elasticity with time. Elastic modulus could be an appropriate factor to predict long-term implantation outcomes. The clinical significance of such findings remains to be demonstrated by long-term analysis.
Rocznik
Strony
153--160
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Urology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
autor
  • Department of Urology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
autor
  • Department of Urology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
  • Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada
autor
  • Department of Urology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
autor
  • Department of Urology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
Bibliografia
  • [1] Abdel-Fattah M, Sivanesan K, Ramsay I, et al. How common are tape erosions? A comparison of two versions of the transobturator tension-free vaginal tape procedure. BJU Int 2006;98(3):594-8.
  • [2] Ballester M, Bui C, Frobert JL, et al. Four-year functional results of the suburethral sling procedure for stress urinary incontinence: a French prospective randomized multicentre study comparing the retropubic and transobturator routes. World J Urol 2012;30(1):117-22.
  • [3] Bellows C F, Wheatley BM, Moroz K, et al. The effect of bacterial infection on the biomechanical properties of biological mesh in a rat model. PLoS One 2011;6(6):e21228.
  • [4] Bigozzi M A., Provenzano S, Maeda F, et al. In vivo biomechanical properties of heavy versus light weight monofilament polypropylene meshes. Does the knitting pattern matter? Neurourol Urodyn 2015 Oct 5. doi: 10.1002/nau.22890. [Epub ahead of print]
  • [5] Burkhard F C, Lucas MG, Berghmans LC, et al. European Association of Urology (EAU): EAU Guidelines on the Urinary Incontinence in Adults [Internet] Published: 2016 [Accessed: 2016 September]. Available from: https://uroweb.org/guideline/urinary-incontinence
  • [6] Calvo B, Pascual G, Peña E, et al. Biomechanical and morphological study of a new elastic mesh (Ciberlastic) to repair abdominal wall defects. J Mech Behav Biomed Mater 2016;59:366-78.
  • [7] Cobb WS, Peindl RM, Zerey M, et al. Mesh terminology 101. Hernia 2009;13(1):1-6.
  • [8] Cordero A, Hernández-Gascón B, Pascual G, et al. Biaxial Mechanical Evaluation of Absorbable and Nonabsorbable Synthetic Surgical Meshes Used for Hernia Repair: Physiological Loads Modify Anisotropy Response. Ann Biomed Eng. 2016 Jul;44(7):2181-8.
  • [9] Dietz HP, Vancaillie P, Svehla M, et al. Mechanical properties of urogynecologic implant materials. Int Urogynecol J 2003;14(4):239-43
  • [10] Falconer C, Söderberg M, Blomgren B, et al. Influence of different sling materials on connective tissue metabolism in stress urinary incontinent women. Int Urogynecol J Pelvic Floor Dysfunct 2001;12 Suppl 2:S19-23.
  • [11] Feola A, Barone W, Moalli P, et al. Characterizing the ex vivo textile and structural properties of synthetic prolapse mesh products. Int Urogynecol J 2013;24(4):559-64.
  • [12] Feola A, Pal S, Moalli P, et al. Varying degrees of nonlinear mechanical behavior arising from geometric differences of urogynecological meshes. J Biomech 2014;47(11):2584-9.
  • [13] Li X, Kruger JA, Jor JW, et al. Characterizing the ex vivo mechanical properties of synthetic polypropylene surgical mesh. J Mech Behav Biomed Mater 2014;37:48-55.
  • [14] Liang R, Abramowitch S, Knight K, et al. Vaginal degeneration following implantation of synthetic mesh with increased stiffness. BJOG 2013;120(2):233-43.
  • [15] Liapis A, Bakas P, Creatsas G. Efficacy of inside-out transobturator vaginal tape (TVTO) at 4 years follow up. Eur J Obstet Gynecol Reprod Biol 2010;148(2):199-201.
  • [16] Lei L, Song Y, Chen R. Biomechanical properties of prolapsed vaginal tissue in pre- and postmenopausal women. Int Urogynecol J 2007;18(6):603-7
  • [17] Mangera A, Bullock AJ, Roman S, et al. Comparison of candidate scaffolds for tissue engineering for stress urinary incontinence and pelvic organ prolapse repair. BJU Int 2013;112(5):674-85.
  • [18] Pariente J L, Villars F, Bram R, et al. Mechanical evaluation of various suburethral tapes used for the treatment of stress urinary incontinence. Prog Urol 2005;15(6):1106-9.
  • [19] Petros P E. Repairing damage fascia: ongoing and post operative consideration. In The Female Pelvic Floor, Petros PE, Ed., Springer: Berlin, Germany, 2007;108-56.
  • [20] Röhrnbauer B, Mazza E. A non-biological model system to simulate the in vivo mechanical behavior of prosthetic meshes. J Mech Behav Biomed Mater. 2013 Apr;20:305-15.
  • [21] Sergent F, Desilles N, Lacoume Y, et al. Experimental biomechanical evaluation of polypropylene prostheses used in pelvic organ prolapse surgery. Int Urogynecol J Pelvic Floor Dysfunct 2009;20(5):597-604.
  • [22] Shepherd J P, Feola AJ, Abramowitch S D, et al. Uniaxial biomechanical properties of seven different vaginally implanted meshes for pelvic organ prolapse. Int Urogynecol J 2012;23(5):613-20.
  • [23] Siegel A L, Kim M, Goldstein M, et al. High incidence of vaginal mesh extrusion using the intravaginal slingplasty sling. J Urol 2005;174(4):1308-11.
  • [24] Spiess P E, Rabah D, Herrera C, et al. The tensile properties of tension-free vaginal tape and cadaveric fascia lata in an in vivo rat model. BJU Int 2004;93(1):171-3.
  • [25] Ulmsten U, Petros P. Intravaginal slingplasty (IVS): an ambulatory surgical procedure for treatment of female urinary incontinence. Scand J Urol Nephrol 1995;29(1):75-82.
  • [26] Wriggers P. Computational contact mechanics, 2nd edition, Springer: New York, NY, USA, 2006.
  • [27] Zorn KC, Spiess P E, Singh G, et al. Long-term tensile properties of tension-free vaginal tape, suprapubic arc sling system and urethral sling in an in vivo rat model. J Urol 2007;177(3):1195-8.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b18b5b9c-157d-413e-9391-c6373848eb39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.