PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of Rhodamine B from aqueous solution by ZnFe2O4 nanocomposite with magnetic separation performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Magnetic ZnFe2 O4  nanocomposite (ZnFe-NC) was used as an adsorbent for the removal of Rhodamine B (RB) from aqueous solution. The synthesized nanocomposite was characterized by XRD, SEM, HRTEM, BET and FTIR. The effects of various parameters such as initial RB concentration (5–25 mg L−1 ), pH (3.4–11.1) and temperature (20–60°C) were investigated. The adsorption capacity at equilibrium increased from 5.02 to 9.83 mg g−1 , with the increase in the initial concentration of RB from 5 to 25 mg L−1  at pH 7.0 and at 20°C. The experimental results indicated that the maximum RB removal could be attained at a solution pH of 4.4 and the adsorption capacity obtained was 6.02 mg g−1 . Kinetic adsorption data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order model and the intraparticle diffusion model. The adsorption kinetics well fitted using a pseudo-second-order kinetic model. The experimental isotherm data were analyzed using two isotherm models, namely, Langmuir and Freundlich. The results revealed that the adsorption behavior of the RB onto ZnFe-NC fitted well with the Langmuir isotherm model. In addition, various thermodynamic parameters, such as standard Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) have been calculated.
Słowa kluczowe
Rocznik
Strony
65--74
Opis fizyczny
Bibliogr. 59 poz., rys., tab.
Twórcy
autor
  • Maritime University of Szczecin, Department of Environmental Protection, Henryka Pobożnego 11, 70-507 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, ul. Pułaskiego 10, Szczecin 70-322, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, ul. Pułaskiego 10, Szczecin 70-322, Poland
Bibliografia
  • 1. Arora, S. (2014). Textile Dyes: It’s Impact on Environment and its Treatment. J. Bioremed. Biodeg. 5(3), 1. http://dx.doi.org/10.4172/2155-6199.1000e146.
  • 2. Chen, X., Xue, Z., Yao, Y., Wang, W., Zhu, F. & Hong, C. (2012). Oxidation Degradation of Rhodamine B in Aqueous by UV/S2O82− Treatment System. Int. J. Photoenergy. 2012, 1–5. http://dx.doi.org/10.1155/2012/754691.
  • 3. Moghaddam, S. S., Moghaddam, M. R. A. & Arami, M. (2010). Coagulation/flocculation process for dye removal using sludge from water treatment plant: Optimization through response surface methodology. J. Hazard. Mater. 175(1–3), 651–657. https://doi.org/10.1016/j.jhazmat.2009.10.058.
  • 4. Gadekar, M. R., Ahammed Civil Engineering Department, S V National Institute of Technology (2016). Coagulation/flocculation process for dye removal using water treatment residuals: modelling through artificial neural networks. Desalin. Water Treat. 57(55), 26392–26400. http://dx.doi.org/10.1080/19443994.2016.1165150.
  • 5. Mohammadi, N., Khani, H., Gupta, V. K., Amereh, E. & Agarwal, S. (2011). Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies. J. Colloid Interface Sci. 362(2), 457–462. https://doi.org/10.1016/j.jcis.2011.06.067.
  • 6. Gupta, V. K., Kumar, R., Nayak, A., Saleh, T. A. & Barakat, M. A. (2013). Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv. Colloid Interface Sci. 193–194, 24–34. DOI:10.1016/j.cis.2013.03.003.
  • 7. Salem, I. A. & El-Maazawi, M. S. (2000). Kinetics and mechanism of color removal of methylene blue with hydrogen peroxide catalysed by some supported alumina surfaces. Chemosphere 41, 1173–1180. https://doi.org/10.1016/S0045-6535(00)00009-6.
  • 8. Masoumbeigi, H. & Rezaee, A. (2015). Removal of Methylene Blue (MB) dye from synthetic wastewater using UV/H2O2 advanced oxidation process. J. Health Policy Sustain. Health 2(1), 160–166.
  • 9. Gupta, V. K., Jain, R., Mittal, A., Saleh, T. A., Nayak, A., Agarwal, S. & Sikarwar, S. (2012). Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater. Sci. Eng. C. 32(1), 12–17. https://doi.org/10.1016/j.msec.2011.08.018.
  • 10. Saravanan, R., Karthikeyan, S., Gupta, V. K., Sekaran, G., Narayanan, V. & Stephen, A. (2013). Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater. Sci. Eng. C. 33, 91–98. https://doi.org/10.1016/j.msec.2012.08.011.
  • Rashidi, H. R, Sulaiman, N. M. N., Hashim, N. A., Hassan, C. R. C. & Ramli, M. R. (2015). Synthetic reactive dye waste-water treatment by using nano-membrane filtration. Desalin. Water Treat. 55(1), 86–95. http://dx.doi.org/10.1080/19443994.2014.912964.
  • 12. Majewska-Nowak, K. & Kawiecka-Skowron, J. (2011). Ceramic membrane behaviour in anionic dye removal by ultrafiltration. Desalin. Water Treat. 34, 367–373. DOI:10/5004/dwt.2011.2806.
  • 13. Selvam, P. P., Preethi, S., Basakaralingam, P., Thinakaran, N., Sivasamy, A. & Sivanesan, S. (2008). Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite. J. Hazard. Mater. 155, 39–44. DOI: 10.1016/j.jhazmat.2007.11.025.
  • 14. Gad, H. M. H. & El-Sayed, A. A. (2009). Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution. J. Hazard. Mater. 168, 1070–1081. DOI: 10.1016/j.jhazmat.2009.02.155.
  • 15. Huang, J. H., Huang, K. L., Liu, S. Q., Wang, A. T. & Yan, C. (2008). Adsorption of Rhodamine B and methyl orange on a hypercrosslinked polymeric adsorbent in aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 330, 55–61. http://dx.doi.org/10.1016/j.colsurfa.2008.07.050.
  • 16. Shah, J., Rasul Jan, M., Haq, A. & Khan, Y. (2013). Removal of Rhodamine B from aqueous solutions and wastewater by walnut shells: kinetics, equilibrium and thermodynamics studies. Front. Chem. Sci. Eng. 7(4), 428–436. DOI: 10.1007/s11705-013-1358-x.
  • 17. Liu, K., Li, H., Wang, Y., Gou, X. & Duan, Y. (2015). Adsorption and removal of rhodamine B from aqueous solution by tannic acid functionalized graphene. Colloids and Surfaces A: Physicochem. Eng. Asp. 477, 35–41. http://dx.doi.org/10.1016/j.colsurfa.2015.03.048.
  • 18. Khan, T. A., Dahiya, S. & Ali, I. (2012). Use of kaolinite as adsorbent: Equilibrium, dynamics and thermodynamic studies on the adsorption of Rhodamine B from aqueous solution. Appl. Clay Sci. 69, 58–66. http://dx.doi.org/10.1016/j.clay.2012.09.001.
  • 19. Vijayakumar, G., Tamilarasan, R. & Dharmendirakumar, M. (2012). Adsorption, Kinetic, Equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite. J. Mater. Environ. Sci. 3(1), 157–170. ISSN: 2028-2508.
  • 20. Zhang, Z. & Kong, J. (2011). Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. J. Hazard. Mater. 193, 325–329. DOI: 10.1016/j.jhazmat.2011.07.033.
  • 21. Xie, Y., Qian, D., Wu, D. & Ma, X. (2011). Magnetic halloysite nanotubes/iron oxide composites for the adsorption of dyes. Chem. Eng. J. 168, 959–963. DOI: 10.1016/j.cej.2011.02.031.
  • 22. Singh, K.P., Gupta, S., Singh, A.K. & Sinha, S. (2011). Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. J. Hazard. Mater. 186, 1462–1473. DOI: 10.1016/j.jhazmat.2010.12.032.
  • 23. Madrakian, T., Afkhami, A., Ahmadi, M. & Bagheri, H. (2011). Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J. Hazard. Mater. 196, 109–114. DOI: 10.1016/j.jhazmat.2011.08.078.
  • 24. Mahmoodi, N. M. (2013). Magnetic ferrite nanoparticle-alginate composite: synthesis, characterization and binary system dye removal. J. Taiwan Inst. Chem. Eng. 44, 322–330. DOI: 10.1016/j.jtice.2012.11.014.
  • 25. Gao, H., Zhao, S., Cheng, X., Wang, X. & Zheng, L. (2013). Removal of anionic azo dyes from aqueous solution using magnetic polymer multi-wall carbon nanotube nanocomposite as adsorbent. Chem. Eng. J. 223, 84–90. DOI: 10.1016/j.cej.2013.03.004.
  • 26. Yao, Y., Miao, S., Liu, S., Ma, L. P., Sun, H. & Wang, S. (2012). Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chem. Eng. J. 184, 326–332. DOI: 10.1016/j.cej.2011.12.017.
  • 27. Wu, Q., Feng, C., Wang, C. & Wang, Z. (2013). A facile one-pot solvothermal method to produce superparamagnetic graphene-Fe3O4 nanocomposite and its application in the removal of dye from aqueous solution. Colloids Surf. B: Biointerf. 101, 210–214. DOI: 10.1016/j.colsurfb.2012.05.036.
  • 28. Wang, L., Li, J., Wang, Y., Zhao, L. & Jiang, Q. (2012). Adsorption capability for Congo red on nanocrystalline MFe2O4 (M = Mn, Fe, Co, Ni) spinel ferrites. Chem. Eng. J. 181–182, 72–79. DOI: 10.1016/j.cej.2011.10.088.
  • 29. Ai, L., Zhou, Y. & Jiang, J. (2011). Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance. Desalination 266, 72–77. DOI: 10.1016/j.desal.2010.08.004.
  • 30. Lopez-Ramon, M. V., Stoeckli, F., Moreno-Castilla, C. & Carrasco-Marin F. (1999). On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 37, 1215–1221. DOI: 10.1016/S0008-6223(98)00317-0.
  • 31. Kuryliszyn-Kudelska, I., Hadzic, B., Sibera, D., Romcevic, M., Romcevic, N., Narkiewicz, U. & Dobrowolski, W. (2011). Dynamic magnetic properties of ZnO nanocrystals incorporating Fe. J. Alloys Compd. 509, 3756–3759. DOI: 10.1016/j.jallcom.2011.01.004.
  • 32. Koseoglu, Y., Baykal, A., Gozuak, F. & Kavas, H. (2009). Structural and magnetic properties of CoxZn1-xFe2O4 nanocrystals synthesized by microwave method. Polyhedron 28, 2887–2892. DOI: 10.1016/j.poly.2009.06.061.
  • 33. Weinzierl, D., Touraud, D., Lecker, A., Pfitzner, A. & Kunz, W. (2008). Controlled preparation of hollow zinc oxide microspheres from aqueous solution using hexamethylenetetramine and cysteine. Mater. Res. Bull. 43, 62–67. DOI: 10.1016/j.materresbull.2007.02.017.
  • 34. Varshney, D., Verma, K. & Kumar, A. (2011). Structural and vibrational properties of ZnxMn1-xFe2O4 (x = 0.0, 0.25, 0.50, 0.75, 1.0) mixed ferrites. Mater. Chem. Phys. 131, 413–419. DOI: 10.1016/j.matchemphys.2011.09.066.
  • 35. Mouallem-Bahout, M., Bertrand, S. & Pena, O. (2005). Synthesis and characterization of Zn1-xNixFe2O4 spinels prepared by a citrate precursor. J. Solid State Chem. 178, 1080–1086. DOI: 10.1016/j.jssc.2005.01.009.
  • 36. Sharifi, I. & Shokrollahi, H. (2012). Nanostructural, magnetic and Mossbauer studies of nanosized Co1-xZnxFe2O4 synthesized by co-precipitation. J. Magn. Magn. Mater. 324, 2397–2403. http://dx.doi.org/10.1016/j.jmmm.2012.03.008.
  • 37. Li, L., Liu, S. & Zhu, T. (2010). Application of activated carbon derived from scrap tires for adsorption of Rhodamine B. J. Environ. Sci. 22(8), 1273–1280. DOI: 10.1016/S1001-0742(09)60250-3.
  • 38. Weber, W.J. & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 89, 31–60.
  • 39. Baskaran, P. K., Venkatraman, B. R., Hema, M. & Arivoli, S. (2010). Adsorption studies of copper ion by low cost activated carbon. J. Chem. Pharm. Res. 2(5), 642–655.
  • 40. Santhi, T., Manonmani, S., Vasantha, V. S. & Chang, Y. T. (2011). A new alternative adsorbent for the removal of cationic dyes from aqueous solution. Arabian J. Chem. DOI: 10.1016/j.arabjc.2011.06.004.
  • 41. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403.
  • 42. Freundlich, H. (1906). Concerning adsorption in solutions. Z. Phys. Chemie. 57, 385–470.
  • 43. Messina, P. V. & Schulz, P. (2006). Adsorption of reactive dyes on titanic-silica mesoporous materials. J. Colloid Interface Sci. 299, 305–320. DOI: 10.1016/j.jcis.2006.01.039.
  • 44. Wang, S., Li, H. & Xu, L. (2006). Application of zeolite MCM-22 for basic dye removal from waste water. J. Colloid Interface Sci. 295, 71–78. DOI: 10.1016/j.jcis.2005.08.006.
  • 45. Wang, S. & Zhu, Z. H. (2006). Characterization and environmental application of an Australian natural zeolite for basic dye removal from solution. J. Hazard. Mater. 136, 946–952. DOI: 10.1016/j.jhazmat.2006.01.038.
  • 46. Martin, E. G. & Jimenez, M. E. (2005). Influence of tannic acid in Leacril/Rhodamine B system: Thermodynamics aspects. Colloids Surf. A Physicochem. Eng. Asp. 270/271, 93–101. http://dx.doi.org/10.1016/j.colsurfa.2005.05.047.
  • 47. Wang, S., Soudi, M., Li, L. & Zhu Z. H. (2006). Coal ash conversion into effective adsorbent for removal of heavy metals and dyes from waste water. J. Hazard. Mater. 133, 243–251. DOI: 10.1016/j.jhazmat.2005.10.034.
  • 48. Namasivayam, C., Muniasamy, N., Gayathri, K., Rani, M. & Ranganathan, K.(1996). Removal of dyes from aqueous solution by cellulosic waste orange peel. Bioresour. Technol. 57, 37–43. http://dx.doi.org/10.1016/0960-8524(96)00044-2.
  • 49. Shen, K. & Gondal, M. A. (2013). Removal of hazardous Rhodamine dye from water by adsorption onto exhausted coffee ground. J. Saudi Chem. Soc. http://dx.doi.org/10.1016/j.jscs.2013.11.005.
  • 50. Tahir, S. S. & Rauf, N. (2006). Removal of cationic dye from aqueous solutions by adsorption onto bentonite clay. Chemosphere 63, 1842–1848.
  • 51. Altinisik, A., Gur, E. & Seki, Y. (2010). A natural sorbent, Luffa cylindrica for the removal of a model basic dye. J. Hazard. Mater. 179, 658–664. DOI: 10.1016/j.jhazmat.2010.03.053.
  • 52. Kadirvelu, K., Karthika, C., Vennilamani, N. & Pattabhi, S. (2005). Activated carbon from industrial solid waste as an adsorbent for the removal of Rhodamine-B from aqueous solution: Kinetic and equilibrium studies. Chemosphere 60(8), 1009–1017. DOI: 10.1016/j.chemosphere.2005.01.047.
  • 53. Wang, Y., Mu, Y., Zhao, Q. B. & Yu, H. Q. (2006). Isotherms, kinetics and thermodynamics of dye biosorption by anaerobic sludge. Sep. Purif. Technol. 50, 1–7. DOI: 10.1016/j.seppur.2005.10.012.
  • 54. Annadurai, G., Juang, R. S. & Lee, D. J. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater. 92, 263–274. DOI: 10.1016/S0304-3894(02)00017-1.
  • 55. Al-Rashed, S. M. & Al-Gaid, A. A. (2012). Kinetic and thermodynamic studies on the adsorption behavior of Rhodamine B dye on Duolite C-20 resin. J. Saudi Chem. Soc. 16, 209–215. http://dx.doi.org/10.1016/j.jscs.2011.01.002.
  • 56. Panda, G. C., Das, S. K. & Guha, A. K. (2009). Jute stick powder as a potential biomass for the removal of Congo Red and Rhodamine B from their aqueous solution. J. Hazard. Mater. 164(1), 374–379. DOI: 10.1016/j.jhazmat.2008.08.015.
  • 57. Guo, Y. P., Zhao, J. Z., Zhang, H., Yang, S. F., Qi, J. R., Wang, Z. C. & Xu, H. (2005). Use of rice husk-based porous carbon for adsorption of Rhodamine B from aqueous solutions. Dyes Pigm. 66(2), 123–128. http://dx.doi.org/10.1016/j.dyepig.2004.09.014.
  • 58. Chatterjee, S. & Woo, S. H. (2009). The removal of nitrate from aqueous solutions by chitosan hydrogel beads. J. Hazard. Mater. 164, 1012–1018. DOI: 10.1016/j.jhazmat.2008.09.001.
  • 59. Crini, G. & Badot, P. M. (2010). Sorption processes and pollution. Conventional and non-conventional sorbents for pollutant removal from wastewaters. Presses universitaires de Franche-Comté, France.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b188bfa8-4b26-41c4-b4f2-e17b7bb36d96
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.