PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and analysis methods for composite bonded joints

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Projektowanie oraz metody obliczeń kompozytowych połączeń klejonych
Języki publikacji
EN
Abstrakty
EN
A literature review on existing design and analysis methods for composite adhesively bonded joints has been conducted. Methods that might form a basis for development of practical engineering methodology for adhesively bonded joints were selected and described. Starting from the simplest and the fastest analytical methods (closed-form solutions): average shear stress, shear lag model and adhesive beam model through more complex and more time consuming numerical methods supported by finite element analysis: global models, local models, cohesive zone models. Assumptions and applicability of each method was discussed. Simple and fast methods in order to be reliable have to include many conservative assumptions and therefore may lead to over-designed structure (weight penalty). Structural optimization and weight reduction require the usage of more complex and time consuming methods. Therefore, selection of adequate methods should always be balanced against strength, durability, costs and weight.
PL
W artykule przedstawione zostały wyniki przeglądu literatury poświęconemu metodom projektowania oraz analiz wytrzymałościowych kompozytowych połączeń klejonych. Wybrane oraz opisane zostały metody, które mogą posłużyć jako podstawa do opracowania praktycznej inżynierskiej metodologii projektowania połączeń klejonych. Zaczynając od prostych oraz szybkich metod analitycznych: metoda średniego naprężenia tnącego, shear lag model, klejowy model belkowy, poprzez bardziej skomplikowane i czasochłonne metody numeryczne wspierane przez metodę elementów skończonych: modele globalne, modele lokalne, model strefy kohezyjnej. Omówiono założenia oraz odpowiedniość każdej z metod. Proste oraz szybkie metody, aby były niezawodne, muszą zawierać wiele założeń, które prowadzą do przewymiarowania struktury. W celu optymalizacji struktury oraz redukcji jej masy, bardziej złożone i czasochłonne metody muszą zostać użyte. W związku z tym, wybór odpowiedniej metody do danego zagadnienia powinien być zawsze zrównoważony pomiędzy wytrzymałością, trwałością, kosztem oraz masą.
Rocznik
Strony
45--63
Opis fizyczny
Bibliogr. 56 poz., fot., rys., tab., wykr., wzory
Twórcy
  • Łukasiewicz Research Network - Institute of Aviation, Al. Krakowska 110/114, Warsaw 02-256, Poland
  • Łukasiewicz Research Network - Institute of Aviation, Al. Krakowska 110/114, Warsaw 02-256, Poland
Bibliografia
  • [1] Baker, A. A., and Scott, M. L., eds., 2016, Composite Materials for Aircraft Structures, AIAA/American Institute of Aeronautics and Astronautics, Inc, Reston, Virginia.
  • [2] Heslehurst, R. B., 2013, Design and Analysis of Structural Joints with Composite Materials, DEStech Publ, Lancaster, Pa.
  • [3] Kim, H., and Kedward, K., 2001, Stress Analysis Of In-Plane, Shear-Loaded, Adhesively Bonded Composite Joints And Assemblies, DOT/FAA/AR-01/7, FAA.
  • [4] Baron, A., 2012, The I-23 “Manager” passenger plane. Selected research problems (in Polish). Scientific Publication of the Institute of Aviation, Warsaw.
  • [5] Speth, D. R., Yang, Y. P., and Ritter, G. W., 2010, “Qualification of Adhesives for Marine Composite-to-Steel Applications,” Int. J. Adhes. Adhes., 30(2), pp. 55-62.10.1016/j.ijadhadh.2009.08.004.
  • [6] Wahab, M. A., 2014, The Mechanics of Adhesives in Composite and Metal Joints: Finite Element Analysis with ANSYS, DEStech Publications, Lancaster, PA.
  • [7] Pegoretti, A., ed., 2019, Adhesive Joining of Structural Components: New Insights and Technologies, SAE International, Warrendale, Pennsylvania, USA.
  • [8] Banea, M. D., and da Silva, L. F. M., 2009, “Adhesively Bonded Joints in Composite Materials: An Overview,” Proc. Inst. Mech. Eng. Part J. Mater. Des. Appl., 223(1), pp. 1-18.10.1243/14644207JMDA219.
  • [9] Da Silva, L. F. M., 2018, Handbook of Adhesion Technology, Springer Science+Business Media, LLC, New York, NY.
  • [10] Gleich, D. M., 2002, Stress Analysis of Structural Bonded Joints, DUP Science, Delft.
  • [11] Zhu, Y., and Kedward, K., 2005, Methods of Analysis and Failure Predictions for Adhesively Bonded Joints of Uniform and Variable Bondline Thickness, DOT/FAA/AR 05-12, FAA.
  • [12] da Silva, L. F. M., das Neves, P. J. C., Adams, R. D., and Spelt, J. K., 2009, “Analytical Models of Adhesively Bonded Joints-Part I: Literature Survey,” Int. J. Adhes. Adhes., 29(3), pp. 319-330.10.1016/j.ijadhadh.2008.06.005.
  • [13] He, X., 2011, “A Review of Finite Element Analysis of Adhesively Bonded Joints,” Int. J. Adhes.Adhes.
  • [14] 2011, A Space Engineering Adhesive Boding Handbook, ECSS-E-HB-32-21, ESA Requirements andStandards Division, Netherlands.
  • [15] Esp, B., 2017, Practical Analysis of Aircraft Composites, Grand Oak Publishing.
  • [16] Flinn, B., and Phariss, M., 2006, The Effect of Peel-Ply Surface Preparation Variables on Bond Quality, DOT/FAA/AR-06/28, FAA.
  • [17] Potter, D. L., 1979, Primary Adhesively Bonded Structure Technology BPABSTC: Design Handbookfor Adhesive Bonding, AFFDL-TR-79-3129, Air Force Flight Development Laboratory, Long Beach.
  • [18] Hart-Smith, L. J., 1973, Adhesive Bonded Single Lap Joints, NASA-CR-112236, NASA, USA.
  • [19] Hart-Smith, L. J., 1973, Adhesive Bonded Double-Lap Joints, NASA-CR-112235, NASA, USA.
  • [20] Tomblin, J., Strole, K., Dodosh, G., and Ilcewicz, L., 2005, Assessment of Industry Practices for Aircraft Bonded Joints and Structures, DOT/FAA/AR-05/13, FAA.
  • [21] Tomblin, J., Seneviratne, W., Escobar, P., and Yoon-Khian, Y., 2002, Shear Stress-Strain Data for Structural Adhesives, DOT/FAA/AR-02/97, FAA.
  • [22] 2012, “CMH-17-1G (Volume 1 of 6) Composite Materials Handbook: Polymer Matrix Composites Guidelines for Characterization of Structural Materials.”
  • [23] Tong, L., and Luo, Q., 2018, “Analytical Approach,” Handbook of Adhesion Technology, L.F.M. da Silva, A. Öchsner, and R. D. Adams, eds., Springer International Publishing, Cham, pp. 665-700.
  • [24] Volkersen, O., 1938, “Die Nietkraftverteilung in Zugbeanspruchten Nietverbindungen Mit Konstanten Laschenquerschnitten,” Luftfahrtforschung, 15, pp. 41-47.
  • [25] Tsai, M. Y., Oplinger, D. W., and Morton, J., 1998, “Improved Theoretical Solutions for Adhesive Lap Joints,” Int. J. Solids Struct., 35(12), pp. 1163-1185.
  • [26] Saleh, M. N., Saeedifar, M., Zarouchas, D., and De Freitas, S. T., 2020, “Stress Analysis of Double-Lap Bi-Material Joints Bonded with Thick Adhesive,” Int. J. Adhes. Adhes, 97, p. 102480. 10.1016/j.ijadhadh.2019.102480.
  • [27] Goland, M., and Reissner, E., 1944, “Stresses in Cemented Joints,” J. Appl. Mech., 11, pp. 4-47.
  • [28] Wang, J., 2013, “Mechanics and Fracture of Hybrid Material Interface Bond,” PhD, The University of Akron.
  • [29] Zhao, B., Lu, Z.-H., and Lu, Y.-N., 2011, “Closed-Form Solutions for Elastic Stress–Strain Analysis in Unbalanced Adhesive Single-Lap Joints Considering Adherend Deformations and Bond Thickness,” Int. J. Adhes. Adhes., 31(6), pp. 434-445. 10.1016/j.ijadhadh.2011.03.002.
  • [30] da Silva, L. F. M., das Neves, P. J. C., Adams, R. D., Wang, A., and Spelt, J. K., 2009, “Analytical Models of Adhesively Bonded Joints-Part II: Comparative Study,” Int. J. Adhes. Adhes., 29(3), pp. 331-341. 10.1016/j.ijadhadh.2008.06.007.
  • [31] Areiza-Hurtado, M., Vega-Posada, C. A., and Aristizabal-Ochoa, J. D., 2019, “A Novel Linear Matrix Method to Analyze Adhesive Joints,” Compos. Struct., 226, p. 111193. 10.1016/j.compstruct.2019.111193.
  • [32] Wang, S., Xie, Z., and Li, X., 2019, “A Modified Analytical Model for Stress Analysis of Adhesively Bonded Stepped-Lap Joints under Tensile Load,” Eur. J. Mech. A/Solids, 77, p. 103794. 10.1016/j.euromechsol.2019.103794.
  • [33] Society of Automotive Engineers, and National Institute for Aviation Research (U.S.), eds., 2012, Composite Materials Handbook Volume 3, SAE International on behalf of CMH-17, a division of Wichita State University, Warrendale, Pa.
  • [34] García, J. A., Chiminelli, A., García, B., Lizaranzu, M., and Jiménez, M. A., 2011, “Characterization and Material Model Definition of Toughened Adhesives for Finite Element Analysis,” Int. J. Adhes. Adhes., 31(4), pp. 182-192. 10.1016/j.ijadhadh.2010.12.006.
  • [35] Wang, C. H., and Chalkley, P., 2000, “Plastic yielding of a Film Adhesive under Multiaxial Stresses,” Int. J. Adhes. Adhes., 20(2), pp. 155-164. 10.1016/S0143-7496(99)00033-0.
  • [36] Rodríguez, R. Quispe, Paiva, W. P. de, Sollero, P., Rodrigues, M. R. Bertoni, and Albuquerque, É. L. de, 2012, “Failure Criteria for Adhesively Bonded Joints,” Int. J. Adhes. Adhes.,37, pp. 26-36. 10.1016/j.ijadhadh.2012.01.009.
  • [37] Campilho, R. D. S. G., ed., 2017, Strength Prediction of Adhesively-Bonded Joints, CRC Press, Taylor & Francis Group, CRC Press is an imprint of the Taylor & Francis Group, an informa business, Boca Raton.
  • [38] Whitney, J. M., and Nuismer, R. J., 1974, “Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations,” J. Compos. Mater., 8(3), pp. 253-265. 10.1177/002199837400800303.
  • [39] Sajikumar, K. S., Kumar, N. A., and Rao, B. N., 2014, “Application of the Point Stress Criterion to Assess the Bond Strength of a Single-Lap Joint,” Strength Mater., 46(4), pp. 518-525. 10.1007/s11223-014-9577-z.
  • [40] Akhavan-Safar, A., Silva, L. F. M. da, and Ayatollahi, M. R., 2017, “An Investigation on the Strength of Single Lap Adhesive Joints with a Wide Range of Materials and Dimensions Using a Critical Distance Approach,” Int. J. Adhes. Adhes., 78, pp. 248-255. 10.1016/j.ijadhadh.2017.08.009.
  • [41] Cruz-G, C. E., Akhavan-Safar, A., da Silva, L. F. M., and Ayatollahi, M. R., 2020, “On the Evaluation of a Critical Distance Approach for Failure Load Prediction of Adhesively Bonded Dissimilar Materials,” Continuum Mech. Thermodyn.32, 1647–1657. 10.1007/s00161-020-00871-7.
  • [42] Barenblatt, G. I., 1962, “The Mathematical Theory of Equilibrium Cracks in Brittle Fracture,” Advances in Applied Mechanics, H. L. Dryden, T. von Kármán, G. Kuerti, F.H. van den Dungen, and L. Howarth, eds., Elsevier, pp. 55-129.
  • [43] Dugdale, D. S., 1960, “Yielding of Steel Sheets Containing Slits,” J. Mech. Phys. Solids, 8(2), pp. 100-104. 10.1016/0022-5096(60)90013-2.
  • [44] Camanho, P. P., and Davila, C. G., 2002, Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials, NASA/TM-2002-211737, NASA Langley Research Center; Hampton, VA, United States.
  • [45] “Abaqus Analysis User’s Manual - Dokumentacja Programu Abaqus 6.12.”
  • [46] 2016, “MSC Nastran 2016, Nonlinear User’s Guide, SOL400.”
  • [47] da Silva, L. F. M., and Campilho, R. D. S. G., 2012, “Advances in Numerical Modelling of Adhesive Joints,” Advances in Numerical Modeling of Adhesive Joints, L. F. M. da Silva, and R. D. S. G. Campilho, eds., Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1-93.
  • [48] Carvalho, U. T. F., and Campilho, R. D. S. G., 2017, “Validation of Pure Tensile and Shear Cohesive Laws Obtained by the Direct Method with Single-Lap Joints,” Int. J. Adhes. Adhes., 77, pp. 41-50. 10.1016/j.ijadhadh.2017.04.002.
  • [49] Sun, L., Tie, Y., Hou, Y., Lu, X., and Li, C., 2020, “Prediction of Failure Behavior of Adhesively Bonded CFRP Scarf Joints Using a Cohesive Zone Model,” Eng. Fract. Mech., 228, p. 106897. 10.1016/j.engfracmech.2020.106897.
  • [50] Zhang, J., Wang, J., Yuan, Z., and Jia, H., 2018, “Effect of the Cohesive Law Shape on the Modelling of Adhesive Joints Bonded with Brittle and Ductile Adhesives,” Int. J. Adhes. Adhes., 85, pp. 37-43. 10.1016/j.ijadhadh.2018.05.017.
  • [51] Silva, D. F. O., Campilho, R. D. S. G., Silva, F. J. G., and Carvalho, U. T. F., 2018, “Application a Direct/Cohesive Zone Method for the Evaluation of Scarf Adhesive Joints,” Appl. Adhes. Sci., 6(1), p. 13. 10.1186/s40563-018-0115-2.
  • [52] 2009, “ISO 25217:2009, Adhesives - Determination of the Mode 1 Adhesive Fracture Energy of Structural Adhesive Joints Using Double Cantilever Beam and Tapered Double Cantilever Beam Specimens."
  • [53] D30 Committee, ASTM D5041-98(2019), Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional FiberAReinforced Polymer Matrix Composites, ASTM International.
  • [54] D30 Committee, ASTM D6671 / D6671M-19, Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites, ASTM International.
  • [55] Sørensen, B. F., and Jacobsen, T. K., 2003, “Determination of Cohesive Laws by the J Integral Approach,” Cohesive Models, 70(14), pp. 1841-1858. 10.1016/S0013-7944(03)00127-9.
  • [56] Davis, M., and Tomblin, J., 2007, “DOT/FAA/AR-TN06/57, Best Practice in Adhesive-Bonded Structures and Repairs.”
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b187fa03-6e78-4089-a3ad-49f718b16ad2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.