Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Carbon fiber reinforced polymers (CFRPs) combine high load-carrying capacity with low specific weight, making them increasingly important for lightweight design in modern aerospace structures. Their use is expanding not only in primary components but also in repair patches for reinforcing aluminum alloy (AA) elements. However, suitable nondestructive evaluation (NDE) techniques for CFRP-AA assemblies remain limited. CFRPs are heterogeneous materials composed of carbon fibers and a polymer matrix, characterized by pronounced interfaces and anisotropic electrical conductivity due to fiber orientation. For evaluation purposes, CFRPs can be approximated as a homogeneous medium with an effective specific conductivity determined by composition and design. This study investigates the feasibility of measuring CFRP layer thickness on AA substrates using eddy current (EC) techniques. Conventional EC instruments designed for dielectric coatings are unsuitable due to the relatively high conductivity of CFRP. To address this, single-coil ferrite-core EC probes (8 mm diameter) were developed and operated at low frequencies in resonant mode. Experiments on specimens provided by the State Enterprise “ANTONOV” demonstrated that CFRP thicknesses up to 12 mm can be measured reliably. The results will contribute to the development of a dedicated EC instrument for CFRP thickness measurement. Moreover, the proposed technique is sensitive to delamination between CFRP and AA substrates or between CFRP layers, enabling potential application in in-service inspection and structural health monitoring. Such use requires initial baseline measurements at reference points for subsequent comparison during the service life of the structure.
Czasopismo
Rocznik
Tom
Strony
62--74
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
- Karpenko Physico-Mechanical Institute of National Academy of Sciences of Ukraine, 5 Naukova St., Lviv, Ukraine, 79060
autor
- Karpenko Physico-Mechanical Institute of National Academy of Sciences of Ukraine, 5 Naukova St., Lviv, Ukraine, 79060
autor
- State Enterprise “ANTONOV”, 1 Mrija St., Kyiv, Ukraine, 03062
Bibliografia
- [1] Baker A, Dutton S, Kelly D. Composite materials for aircraft structures. 2nd ed. Reston (VA): American Institute of Aeronautics and Astronautics; 2004.
- [2] Pezzuti E, Donnici G. Structural composites for aircraft design. ARPN J Eng Appl Sci. 2014;9(10):1889-98.
- [3] Ozkan D, Gok MS, Karaoglanli AC. Carbon fiber reinforced polymer (CFRP) composite materials, their characteristic properties, industrial application areas and their machinability. Adv Struct Mater. 2020;124:235-53. https://doi.org/10.1007/978-3-030-39062-4_20
- [4] Othman R, Ismail NI, Pahmi MAAH, et al. Application of carbon fiber reinforced plastics in automotive industry: A review. J Mech Manuf. 2018;1:144-54.
- [5] Pramanik A, Basak A, Dong Y, et al. Joining of carbon fibre reinforced polimer (CFRP) composites and aluminium alloys: A review. Compos Part A Appl Sci Manuf. 2017;101:1-29. https://doi.org/10.1016/j.compositesa.2017.06.007
- [6] Chen W, Wu D, Wang X, Wang T. A self-frequency-conversion eddy current testing method. Measurement. 2022;195:111129. https://doi.org/10.1016/j.measurement.2022.111129
- [7] Bachir Bouiadjra B, Benyahia F, Albedah A, Bachir Bouiadjra BA, Khan SM. Comparison between composite and metallic patches for repairing aircraft structures of aluminum alloy 7075-T6. Int J Fatigue. 2015;80:128-35. https://doi.org/10.1016/j.ijfatigue.2015.05.014
- [8] Bona A. Theoretical and experimental review of applied mechanical tests for carbon composites with thermoplastic polymer matrix. Trans Aerosp Res. 2019;4(257):55-65. https://doi.org/10.2478/tar-2019-0025
- [9] Siniarski M, Synaszko P, Dragan K. Development of an open-source robotic NDT solution for automated composite repair testing. Fatigue Aircr Struct. 2024;15:146-54. https://doi.org/10.2478/fas-2023-0009
- [10] Wronkowicz A, Dragan K, Lis K. Assessment of uncertainty in damage evaluation by ultrasonic testing of composite structures. Compos Struct. 2018;203:71-84. https://doi.org/10.1016/j.compstruct.2018.06.056
- [11] Wronkowicz-Katunin A, Dragan K. Evaluation of impact damage in composite structures using ultrasonic testing. Fatigue Aircr Struct. 2018;10:82-92. https://doi.org/10.2478/fas-2018-0007
- [12] Montesano J, Fawaz Z, Bougherara H. Use of infrared thermography to investigate the fatigue behavior of a carbon fiber reinforced polymer composite. Compos Struct. 2013;97:76-83. https://doi.org/10.1016/j.compstruct.2012.09.030
- [13] Lobanov M, Znova VA, Pivtorak VA, Kijanets IV. Diagnostic of composite elements of aircraft structures by electron shearography method [in Russian]. Tech Diagn Non-Destr Test. 2016;2:19-27.
- [14] Katunin A, Wronkowicz-Katunin A, Dragan K. Impact damage evaluation in composite structures based on fusion of results of ultrasonic testing and X-ray computed tomography. Sensors. 2020;20(7):1867. https://doi.org/10.3390/s20071867
- [15] Hosono Y, Niwa S, Ohashi T, Gotoh Y. Inspection of CFRP plate using electromagnetic force vibration. In: Proceedings of the International Symposium on Applied Electromagnetics and Mechanics (ISEM 2023), Part 2; 2023. Amsterdam: IOS Press; 2025. https://doi.org/10.3233/SAEM250011
- [16] Nazarchuk Z, Muravsky L, Kuts O. Nondestructive testing of thin composite structures for subsurface defects detection using dynamic laser speckles. Res Nondestr Eval. 2022. https://doi.org/10.1080/09349847.2022.2049407
- [17] Udpa SS, More PO, editors. Nondestructive testing handbook. 3rd ed. Vol. 5, Electromagnetic testing. Columbus (OH): American Society for Nondestructive Testing; 2004.
- [18] Libby HL. Introduction to electromagnetic non-destructive test methods. New York (NY): Wiley-Interscience; 1971.
- [19] Ostash O, Uchanin V, Semenets O, Holovatyuk Y, Kovalchuk L, Derecha V. Evaluation of aluminium alloys degradation in aging aircraft. Res Nondestr Eval. 2018;29(3):156-66. https://doi.org/10.1080/09349847.2017.1413833
- [20] Teterko A, Uchanin V, Hutnik V. Improvement of accuracy of eddy current testing of material electric conductivity and dielectric coating of shell. Mater Sci. 2013;49(6):133-9. https://doi.org/10.1007/s11003-013-9626-0
- [21] Uchanin V. Eddy current techniques for detecting hidden subsurface defects in multilayer aircraft structures. Trans Aerosp Res. 2022;267(2):69-79. https://doi.org/10.2478/tar-2022-0011
- [22] Uchanin V. Detecting and estimating local corrosion damages in long-service aircraft structures by the eddy current method with double-differential probes. Trans Aerosp Res. 2024;275(2):20-32. https://doi.org/10.2478/tar-2024-0003
- [23] Lange R, Mook G. Structural analysis of CFRP using eddy current methods. NDT&E Int. 1994;27(5):241-8. https://doi.org/10.1016/0963-8695(94)90064-7
- [24] De Goeje M, Wapenaar K. Non-destructive inspection of carbon fibre-reinforced plastics using eddy current methods. Composites. 1992;23(3):147-57. https://doi.org/10.1016/0010-4361(92)90435-W
- [25] Cheng J, Qiu J, Xu X, Ji H, Takagi T, Uchimoto T. Research advances in eddy current testing for maintenance of carbon fiber reinforced plastic composites. Int J Appl Electromagn Mech. 2016;51(3):261-84. https://doi.org/10.3233/JAE-150168
- [26] Heuer H, Schulze MH, Meyendorf N. Non-destructive evaluation (NDE) of composites: Eddy current techniques. In: Karbhari VM, editor. Non-destructive evaluation (NDE) of polymer matrix composites. Cambridge: Woodhead Publishing; 2013. p. 33-55. https://doi.org/10.1533/9780857093554.1.33
- [27] Tytko G, Rogala T, Katunin A, Yin W. Damage detection in carbon fiber-reinforced composite structures using eddy current pot-core sensor. IEEE Access. 2024;12:123609-20. https://doi.org/10.1109/ACCESS.2024.3454015
- [28] Xu X, Ji H, Qiu J, Takagi T. Detection of delamination in laminated CFRP composites using eddy current testing: Simulation and experimental study. Int J Appl Electromagn Mech. 2018;57(2):1-16. https://doi.org/10.3233/JAE-170136
- [29] Uchanin VM, Rybachuk VG. Possibility of eddy current testing of low-conductive heterogeneous media [in Ukrainian]. Inf Extr Process. 2022;50(126):5-12. https://doi.org/10.15407/vidbir2022.50.005
- [30] Rybachuk VH, Uchanin VM, Kulynych YP. Specific features of testing of anisotropic nonmagnetic materials by eddy-current probes with circular windings. Mater Sci. 2022;57:452-8. https://doi.org/10.1007/s11003-022-00565-2
- [31] Rybachuk VG, Uchanin VM. A recurrent formula for determination of the effective coercive force in layered ferromagnetic materials. Mater Sci. 2023;58(10):533-539. https://doi.org/10.1007/s11003-023-00695-1
- [32] Dybiec C, Wlodarczyk S, Dybiec M. Measurement of own stress using the Eddy current method. In: Proceedings of the 7th European Conference on Non-destructive Testing; 1998 May 26-29; Copenhagen, Denmark. NDT.net. 1998;3(12). Available from: https://www.ndt.net/article/ecndt98/et/404/404.htm
- [33] Kondej A, Szczepański A. The amplitude-frequency measurement in non-destructive testing using the eddy current method. Weld Technol Rev. 2018;90(11):12-5. https://doi.org/10.26628/wtr.v90i11.973
- [34] Uchanin V, Aleschenko O, Savin A, Derecha V. Research of the eddy-current resonance method for measuring the thickness of the carbon fiber reinforced plastic layer on metallic structures. Paton Weld J. 2025;7:37-41. https://doi.org/10.15407/tpwj2025.07.07
- [35] Hagemaier DJ. Eddy current standard depth of penetration. Mater Eval. 1985; 43(10):1438-41.
- [36] Mottl Z. The quantitative relations between true and standard depth of penetration for air-cored probe coils in eddy current testing. NDT Int. 1990;23(1):11-18. https://doi.org/10.1016/0308-9126(90)90105-9
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b187ed37-5cce-43a1-8d44-bf26adf336ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.