PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Drill base body fabricated with additive manufacturing technology: structure, strenght and reliability

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Korpus wiertła wykonany za pomocą technologii addytywnej: struktura, wytrzymałość i trwałość
Języki publikacji
EN
Abstrakty
EN
The paper presents an investigation of results on an additive manufactured drill base body. Due to the technological and strength limitations, conventional drills with inner coolant ducts may not be smaller than 13 mm diameter. The novel idea was to keep the strength of small diameter drills making spiral coolant ducts. Drills were fabricated using a 3D laser printer to obtain the designed geometry in a way not affecting its stiffness and strength. The tensile strength of samples was between Rm = 1287 and 1603 MPa, and microhardness of drills was between 606 and 627 HV5. The sintered material revealed a very small porosity rate (below 1%) and very few discontinuities. Thus, it was demonstrated that the 3D laser printing enabled the production of advantageous drill base bodies.
PL
W artykule przedstawiono wyniki badań korpusu wiertła wykonanego za pomocą technologii addytywnej. Ze względu na ograniczenia technologiczne i wytrzymałościowe tradycyjne wiertła z wewnętrznymi kanałami nie mogą mieć średnic mniejszych niż 13 mm. Zaprojektowano nowatorskie wiertła o mniejszych średnicach ze spiralnymi kanałami wewnętrznymi, które w mniejszym stopniu obniżają wytrzymałość korpusu. Wykonano je za pomocą laserowej drukarki 3D, gdyż uzyskanie takiego kształtu technologią tradycyjną jest bardzo utrudnione. Wytrzymałość próbek uzyskano w granicach od Rm = 1287 do 1603 MPa, a mikrotwardość pomiędzy 606 a 627 HV5. Uzyskany materiał wykazywał bardzo małą porowatość poniżej 1% i bardzo niewiele nieciągłości struktury. W ten sposób wykazano, że laserowy druk 3D daje możliwość wykonania korpusów wierteł o wysokiej wytrzymałości.
Twórcy
  • Mapal Narzędzia Precyzyjne Sp. z o.o., Poznań, Poland
  • Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Poland
  • Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Poland
Bibliografia
  • 1. Attaran M.: The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons, 2017, 60(5), pp. 677-688, DOI: 10.1016/j.bushor.2017.05.011.
  • 2. DebRoy T., Wei H.L., Zuback J.S., Mukherjee T., Elmer J.W., Milewski J.O., Beese A.M., WilsonHeid A., De A., Zhang W.: Additive manufacturing of metallic components – Process, structure and properties. Progress in Materials Science, 2018, 92, pp. 112-224, DOI: 10.1016/j.pmatsci.2017.10.001.
  • 3. Umaras E., Tsuzuki M.S.G.: Additive Manufacturing - Considerations on Geometric Accuracy and Factors of Influence. IFAC PapersOnLine, 2017, 50(1), pp. 14940-14945, DOI: 10.1016/j.ifacol.2017.08.2545.
  • 4. Rejeski D., Zhao F., Huang Y.: Research needs and recommendations on environmental implications of additive manufacturing. Additive Manufacturing, 2018, 19, pp. 21-28, DOI: 10.1016/j.addma.2017.10.019.
  • 5. Zhang J., Tai W.G., Wang H., Kumar A.S., Lu W.F., Fuh J.Y.H.: Magnetic abrasive polishing of additively manufactured 316L stainless steel parts. Euspen’s 18th International Conference & Exhibition 4-8 June 2018, Venice (Italy). Proceedings, pp. 401-402.
  • 6. Gebhardt A., Hötter J.S.: Additive Manufacturing. Munich: Hanser Publishers, 2016.
  • 7. Sandvik Coromant: Main website. Online.. 2017. Accessed 30 December 2017. Available from: www.sandvik.coromant.com
  • 8. Mapal: Main website. Online. 2017. Accessed 30 December 2017.. Available from: www.mapal.com
  • 9. Tyczyński P., Siemiątkowski Z., Rucki M.: Analysis of the drill base body fabricated with Additive Manufacturing technology. Euspen’s 18th International Conference & Exhibition 4-8 June 2018, Venice (Italy). Proceedings, pp. 287-288.
  • 10. Xue L.: Laser Consolidation - A Rapid Manufacturing Process for Making Net-Shape Functional Components. In: Lawrence J. (ed.): Advances in Laser Materials Processing: Technology, Research and Applications, 2nd edition, London: Woodhead Publishing, 2018, pp. 461-505.
  • 11. Grasso M., Caltanissetta F., Petrò S., Colosimo B.M.: In-situ Monitoring of Geometric Accuracy in Laser Powder Bed Fusion processes. Euspen’s 18th International Conference & Exhibition 4–8 June 2018, Venice (Italy). Proceedings, pp. 293-294.
  • 12. Mutua J., Nakata Sh., Onda T., Chen Zh.Ch.: Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Materials & Design, 2018, 139, pp. 486-497, DOI: 10.1016/j.matdes.2017.11.042.
  • 13. Suryawanshi J., Prashanth K.G., Ramamurty U.: Tensile, fracture, and fatigue crack growth properties of a 3D printed maraging steel through selective laser melting. Journal of Alloys and Compounds, 2017, 725, pp. 355–364, DOI: 10.1016/j.jallcom.2017.07.177.
  • 14. Tan Ch., Zhou K., Ma W., Zhang P., Kuang T.: Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Materials & Design, 2017, 134, pp. 23-34, DOI: 10.1016/j.matdes.2017.08.026.
  • 15. LiZh., XuR.,ZhangZh., Kucukkoc I.:The influence of scan length on fabricating thin-walled components in selective laser melting. International Journal of Machine Tools and Manufacture, 2018, 126, pp. 1-12, DOI: 10.1016/j.ijmachtools.2017.11.012.
  • 16. Astakhov V.P.: Drills: Science and Technology of Advanced Operations. Boca Raton: CRC Press, 2014.
  • 17. Tschätsch H.: Applied Machining Technology. Heidelberg – London: Springer, 2009.
  • 18. Heisel U., Stortchak M., Eisseler R.: Optimization of Deep Hole Drilling Processes with Smallest Drilling Diameters. In: Inasaki I. (ed.): Initiatives of Precision Engineering at the Beginning of a Millennium. New York: Kluwer Academic Publishers, 2002, pp. 157-163.
  • 19. Hendrixson S.: Additive Manufacturing Makes Subtractive Cutting Tools. Online.. 2015. Accessed 9 July 2018.. Available from: https://www.additivemanufacturing.media/articles/additivemanufacturing-makes-subtractive-cutting-tools.
  • 20. Schnabel D., Özkay E., Biermann D., Eberhard P.: Modeling the motion of the cooling lubricant in drilling processes using the finite volume and the smoothed particle hydrodynamics methods. Computer Methods in Applied Mechanics and Engineering, 2018, 329, pp. 369-395, DOI: 10.1016/j.cma.2017.09.015.
  • 21. Johns A.S., Hewson R.W., Merson E., Summers J.L., Thompson H.M.: Internal twist drill coolant channel modelling using computational fluid dynamics. In: Oñate E., Oliver J., Huerta A. (eds.): Proceedings of 6th European Conference on Computational Fluid Dynamics (ECFD), 2014, II, pp. 1114-1122.
  • 22. Takata N., Nishida R., Suzuki A., Kobashi M., Kato M.: Crystallographic Features of Microstructure in Maraging Steel Fabricated by Selective Laser Melting. Metals, 2018, 8, pp. 440-450, DOI: 10.3390/met8060440.
  • 23. Umemoto M., Liu Z.G., Tsuchiya K., Sugimoto S., Bepari M.M.A.: Relationship between hardness and tensile properties in various single structured steels. Materials Science and Technology, 2001, 17(5), pp. 505-511, DOI: 10.1179/026708301101510339.
  • 24. Zhang P., Li S.X., Zhang Z.F.: General relationship between strength and hardness. Materials Science and Engineering: A, 2011, 529(25), pp. 62-73, DOI: 10.1016/j.msea.2011.08.061.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1868cba-e723-48c5-a8e3-f7a8f9f00793
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.